Spaces:
Running
Running
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
import json | |
import sys | |
sys.path.append("../") | |
from datasets.dataset_loader import SpatialDataset | |
from transformers import RobertaTokenizer, BertTokenizer | |
class WHGDataset(SpatialDataset): | |
# initializes dataset loader and converts dataset python object | |
def __init__(self, data_file_path, tokenizer=None,max_token_len = 512, distance_norm_factor = 1, spatial_dist_fill=100, sep_between_neighbors = False): | |
if tokenizer is None: | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
else: | |
self.tokenizer = tokenizer | |
self.read_data(data_file_path) | |
self.max_token_len = max_token_len | |
self.distance_norm_factor = distance_norm_factor | |
self.spatial_dist_fill = spatial_dist_fill | |
self.sep_between_neighbors = sep_between_neighbors | |
# returns a specific item from the dataset given an index | |
def __getitem__(self, idx): | |
return self.load_data(idx) | |
# returns the length of the dataset loaded | |
def __len__(self): | |
return self.len_data | |
def get_average_distance(self,idx): | |
line = self.data[idx] | |
line_data_dict = json.loads(line) | |
pivot_pos = line_data_dict['info']['geometry']['coordinates'] | |
neighbor_geom_list = line_data_dict['neighbor_info']['geometry_list'] | |
lat_diff = 0 | |
lng_diff = 0 | |
for neighbor in neighbor_geom_list: | |
coordinates = neighbor['coordinates'] | |
lat_diff = lat_diff + (abs(pivot_pos[0]-coordinates[0])) | |
lng_diff = lng_diff + (abs(pivot_pos[1]-coordinates[1])) | |
avg_lat_diff = lat_diff/len(neighbor_geom_list) | |
avg_lng_diff = lng_diff/len(neighbor_geom_list) | |
return (avg_lat_diff, avg_lng_diff) | |
# reads dataset from given filepath, run on initilization | |
def read_data(self, data_file_path): | |
with open(data_file_path, 'r') as f: | |
data = f.readlines() | |
len_data = len(data) | |
self.len_data = len_data | |
self.data = data | |
# loads and parses dataset | |
def load_data(self, idx): | |
line = self.data[idx] | |
line_data_dict = json.loads(line) | |
# get pivot info | |
pivot_name = str(line_data_dict['info']['name']) | |
pivot_pos = line_data_dict['info']['geometry']['coordinates'] | |
# get neighbor info | |
neighbor_info = line_data_dict['neighbor_info'] | |
neighbor_name_list = neighbor_info['name_list'] | |
neighbor_geom_list = neighbor_info['geometry_list'] | |
parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geom_list, self.spatial_dist_fill) | |
parsed_data['qid'] = line_data_dict['info']['qid'] | |
return parsed_data | |