Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import numpy as np | |
import json | |
import math | |
from sklearn.preprocessing import LabelBinarizer, LabelEncoder | |
import torch | |
from transformers import RobertaTokenizer, BertTokenizer | |
from torch.utils.data import Dataset | |
sys.path.append('/home/zekun/spatial_bert/spatial_bert/datasets') | |
from dataset_loader import SpatialDataset | |
import pdb | |
class USGS_MapDataset(SpatialDataset): | |
def __init__(self, data_file_path, tokenizer=None, max_token_len = 512, distance_norm_factor = 1, spatial_dist_fill=100, sep_between_neighbors = False): | |
if tokenizer is None: | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
else: | |
self.tokenizer = tokenizer | |
self.max_token_len = max_token_len | |
self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance | |
self.sep_between_neighbors = sep_between_neighbors | |
self.read_file(data_file_path) | |
super(USGS_MapDataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors ) | |
def read_file(self, data_file_path): | |
with open(data_file_path, 'r') as f: | |
data = f.readlines() | |
len_data = len(data) | |
self.len_data = len_data | |
self.data = data | |
def load_data(self, index): | |
spatial_dist_fill = self.spatial_dist_fill | |
line = self.data[index] # take one line from the input data according to the index | |
line_data_dict = json.loads(line) | |
# process pivot | |
pivot_name = line_data_dict['info']['name'] | |
pivot_pos = line_data_dict['info']['geometry'] | |
neighbor_info = line_data_dict['neighbor_info'] | |
neighbor_name_list = neighbor_info['name_list'] | |
neighbor_geometry_list = neighbor_info['geometry_list'] | |
parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill ) | |
return parsed_data | |
def __len__(self): | |
return self.len_data | |
def __getitem__(self, index): | |
return self.load_data(index) | |