Spaces:
Sleeping
Sleeping
import streamlit as st | |
import spacy | |
from transformers import pipeline | |
from PIL import Image | |
nlp = spacy.load("./models/en_core_web_sm") | |
st.title("SpaGAN Demo") | |
st.write("Enter a text, and the system will highlight the geo-entities within it.") | |
# Define a color map for different entity types | |
COLOR_MAP = { | |
'FAC': 'red', # Facilities (e.g., buildings, airports) | |
'ORG': 'blue', # Organizations (e.g., companies, institutions) | |
'LOC': 'purple', # Locations (e.g., mountain ranges, water bodies) | |
'GPE': 'green' # Geopolitical Entities (e.g., countries, cities) | |
} | |
# Display the color key | |
st.write("**Color Key:**") | |
for label, color in COLOR_MAP.items(): | |
st.markdown(f"- **{label}**: <span style='color:{color}'>{color}</span>", unsafe_allow_html=True) | |
user_input = st.text_area("Input Text", height=200) | |
# Process the text when the button is clicked | |
if st.button("Highlight Geo-Entities"): | |
if user_input.strip(): | |
# Process the text using spaCy | |
doc = nlp(user_input) | |
# Highlight geo-entities with different colors | |
highlighted_text = user_input | |
for ent in reversed(doc.ents): | |
if ent.label_ in COLOR_MAP: | |
color = COLOR_MAP[ent.label_] | |
highlighted_text = ( | |
highlighted_text[:ent.start_char] + | |
f"<span style='color:{color}; font-weight:bold'>{ent.text}</span>" + | |
highlighted_text[ent.end_char:] | |
) | |
# Display the highlighted text with HTML support | |
st.markdown(highlighted_text, unsafe_allow_html=True) | |
else: | |
st.error("Please enter some text.") |