File size: 10,588 Bytes
46e0dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import sys\n",
    "from transformers import BertTokenizer\n",
    "from transformers.models.bert.modeling_bert import BertForMaskedLM\n",
    "import torch\n",
    "from WHGDataset import WHGDataset\n",
    "\n",
    "sys.path.append(\"../\")\n",
    "from datasets.usgs_os_sample_loader import USGS_MapDataset\n",
    "from datasets.wikidata_sample_loader import Wikidata_Geocoord_Dataset, Wikidata_Random_Dataset\n",
    "from models.spatial_bert_model import SpatialBertModel\n",
    "from models.spatial_bert_model import SpatialBertConfig\n",
    "from models.spatial_bert_model import  SpatialBertForMaskedLM\n",
    "from utils.find_closest import find_ref_closest_match, sort_ref_closest_match\n",
    "from utils.common_utils import load_spatial_bert_pretrained_weights, get_spatialbert_embedding, get_bert_embedding, write_to_csv\n",
    "from utils.baseline_utils import get_baseline_model\n",
    "\n",
    "\n",
    "# load our spabert model\n",
    "device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
    "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
    "        \n",
    "config = SpatialBertConfig()\n",
    "model = SpatialBertModel(config)\n",
    "\n",
    "model.to(device)\n",
    "model.eval()\n",
    "\n",
    "# load pretrained weights\n",
    "pre_trained_model=torch.load('tutorial_datasets/fine-spabert-base-uncased-finetuned-osm-mn.pth')\n",
    "cnt_layers = 0\n",
    "model_keys = model.state_dict()\n",
    "for key in model_keys:\n",
    "    if 'bert.'+ key in pre_trained_model:\n",
    "        model_keys[key] = pre_trained_model[\"bert.\"+key]\n",
    "        cnt_layers += 1\n",
    "    else:\n",
    "        print(\"No weight for\", key)\n",
    "print(cnt_layers, 'layers loaded')\n",
    "\n",
    "model.load_state_dict(model_keys)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load entity-linking datasets\n",
    "\n",
    "sep_between_neighbors = False\n",
    "wikidata_dict_per_map = {}\n",
    "wikidata_dict_per_map['wikidata_emb_list'] = []\n",
    "wikidata_dict_per_map['wikidata_qid_list'] = []\n",
    "wikidata_dict_per_map['names'] = []\n",
    "\n",
    "\n",
    "whg_dataset = WHGDataset(\n",
    "    data_file_path = 'tutorial_datasets/spabert_whg_wikidata.json',\n",
    "    tokenizer = tokenizer,\n",
    "    max_token_len = 512, \n",
    "    distance_norm_factor = 25, \n",
    "    spatial_dist_fill=100,\n",
    "    sep_between_neighbors = sep_between_neighbors)\n",
    "\n",
    "wikidata_dataset = WHGDataset(\n",
    "    data_file_path='tutorial_datasets/spabert_wikidata_sampled.json',\n",
    "    tokenizer=tokenizer,\n",
    "    max_token_len=512,\n",
    "    distance_norm_factor=50000,\n",
    "    spatial_dist_fill=20,\n",
    "    sep_between_neighbors=sep_between_neighbors)\n",
    "\n",
    "\n",
    "matched_wikid_dataset = []\n",
    "for i in range(len(wikidata_dataset)):\n",
    "    emb = wikidata_dataset[i]\n",
    "    matched_wikid_dataset.append(emb)\n",
    "    max_dist_lng = max(emb['norm_lng_list'])\n",
    "    max_dist_lat = max(emb['norm_lat_list'])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "sys.path.append('../')\n",
    "from experiments.entity_matching.data_processing import request_wrapper\n",
    "import scipy.spatial as sp\n",
    "import numpy as np\n",
    "## ENTITY LINKING ##\n",
    "\n",
    "\n",
    "# disambigufy\n",
    "def disambiguify(model, model_name, usgs_dataset, wikidata_dict_list, candset_mode = 'all_map', if_use_distance = True, select_indices = None): \n",
    "\n",
    "    if select_indices is None: \n",
    "        select_indices = range(0, len(wikidata_dict_list))\n",
    "\n",
    "\n",
    "    assert(candset_mode in ['all_map','per_map'])\n",
    "    wikidata_emb_list = wikidata_dict_list['wikidata_emb_list']\n",
    "    wikidata_qid_list = wikidata_dict_list['wikidata_qid_list'] \n",
    "    ret_list = []\n",
    "    for i in range(len(usgs_dataset)):\n",
    "        if (i % 1000) == 0:\n",
    "            print(\"disambigufy at \" + str((i/len(usgs_dataset))*100)+\"%\")\n",
    "        if model_name == 'spatial_bert-base' or model_name == 'spatial_bert-large':\n",
    "            usgs_emb = get_spatialbert_embedding(usgs_dataset[i], model, use_distance = if_use_distance)\n",
    "        else:\n",
    "            usgs_emb = get_bert_embedding(usgs_dataset[i], model)\n",
    "        sim_matrix = 1 - sp.distance.cdist(np.array(wikidata_emb_list), np.array([usgs_emb]), 'cosine')\n",
    "        closest_match_qid = sort_ref_closest_match(sim_matrix, wikidata_qid_list)\n",
    "        #print(closest_match_qid)\n",
    "            \n",
    "        sorted_sim_matrix = np.sort(sim_matrix, axis = 0)[::-1] # descending order\n",
    "\n",
    "        ret_dict = dict()\n",
    "        ret_dict['pivot_name'] = usgs_dataset[i]['pivot_name']\n",
    "\n",
    "        ret_dict['sorted_match_qid'] = [a[0] for a in closest_match_qid]\n",
    "        ret_dict['sorted_sim_matrix'] = [a[0] for a in sorted_sim_matrix]\n",
    "\n",
    "        ret_list.append(ret_dict)\n",
    "\n",
    "    return ret_list \n",
    "\n",
    "\n",
    "candset_mode = 'all_map'\n",
    "for i in range(0, len(matched_wikid_dataset)):\n",
    "    if (i % 1000) == 0:\n",
    "        print(\"processing at: \"+ str(i/len(matched_wikid_dataset)*100) + \"%\")\n",
    "        #print(matched_wikid_dataset[i])\n",
    "    entity = matched_wikid_dataset[i]\n",
    "    wikidata_emb = get_spatialbert_embedding(matched_wikid_dataset[i], model)\n",
    "    wikidata_dict_per_map['wikidata_emb_list'].append(wikidata_emb)\n",
    "    wikidata_dict_per_map['wikidata_qid_list'].append(matched_wikid_dataset[i]['qid'])\n",
    "    wikidata_dict_per_map['names'].append(wikidata_dataset[i]['pivot_name'])\n",
    "\n",
    "ret_list = disambiguify(model, 'spatial_bert-base', whg_dataset, wikidata_dict_per_map, candset_mode= candset_mode, if_use_distance = not False, select_indices = None)\n",
    "write_to_csv('tutorial_datasets/', \"output.csv\", ret_list)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Evaluate entity linking\n",
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "\n",
    "# define the ground truth directory for evaluation\n",
    "gt_dir = os.path.abspath(\"tutorial_datasets/spabert_wikidata_sampled.json\")\n",
    "\n",
    "\n",
    "# define the file where we wrote out predictions\n",
    "prediction_path = os.path.abspath('tutorial_datasets/output.csv.json')\n",
    "\n",
    "\n",
    "# define ground truth dictionary\n",
    "gt_dict = dict()\n",
    "\n",
    "with open(gt_dir) as f:\n",
    "    data = f.readlines()\n",
    "    for line in data:\n",
    "        d = json.loads(line)\n",
    "        gt_dict[d['info']['name']] = d['info']['qid']\n",
    "\n",
    "\n",
    "\n",
    "rank_list = []\n",
    "hits_at_1 = 0\n",
    "hits_at_5 = 0\n",
    "hits_at_10 = 0\n",
    "out_dict = {'title':[],'rank':[]}\n",
    "\n",
    "with open(prediction_path) as f:\n",
    "    data = f.readlines()\n",
    "    for line in data:\n",
    "        pred_dict = json.loads(line)\n",
    "        pivot_name = pred_dict['pivot_name']\n",
    "        sorted_matched_uri = pred_dict['sorted_match_qid']\n",
    "        sorted_sim_matrix = pred_dict['sorted_sim_matrix']\n",
    "        if pivot_name in gt_dict:\n",
    "            gt_uri = gt_dict[pivot_name]\n",
    "            rank = sorted_matched_uri.index(gt_uri) +1\n",
    "            if rank == 1:\n",
    "                hits_at_1 += 1\n",
    "            if rank <= 5:\n",
    "                hits_at_5 += 1\n",
    "            if rank <= 10:\n",
    "                hits_at_10 +=1\n",
    "            rank_list.append(rank)\n",
    "            out_dict['title'].append(pivot_name)\n",
    "            out_dict['rank'].append(rank)\n",
    "\n",
    "hits_at_1 = hits_at_1/len(rank_list)\n",
    "hits_at_5 = hits_at_5/len(rank_list)\n",
    "hits_at_10 = hits_at_10/len(rank_list)\n",
    "\n",
    "print(hits_at_1)\n",
    "print(hits_at_5)\n",
    "print(hits_at_10)\n",
    "\n",
    "out_df = pd.DataFrame(out_dict)\n",
    "out_df\n",
    "        \n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Mean Reciprocal Rank is a statistical measure for evaluating processes that produce a list of possible responses of a query in order of probability of correctness.\n",
    "\n",
    "First we obtain the rank from the ranked list shown above.\n",
    "\n",
    "Next we calculate the reciprocal rank for each rank. The reciprocal is the inverse of the rank. So for a rank of 1 the recprocal rank would be 1/1, for a rank of 2 the reciprocal rank would be 1/2.\n",
    "\n",
    "The mean reciprocal rank is the average of the reciprocal ranks. \n",
    "\n",
    "This measure gives us a general conceptualization of how well our model predicts entities based on their embeddings.\n",
    "\n",
    "An in-depth description of Mean Reciprocal Rank can be found here https://en.wikipedia.org/wiki/Mean_reciprocal_rank\n",
    "\n",
    "An import thing to keep in mind when caclulating mean reciprocal rank is that it tends to inversely scale with your candidate set size\n",
    "\n",
    "Our candidate set is has a length of 4624 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# calculating the mean reciprocal rank (MRR)\n",
    "import numpy as np\n",
    "\n",
    "reciprocal_list = [1./rank for rank in rank_list]\n",
    "\n",
    "MRR = np.mean(reciprocal_list)\n",
    "\n",
    "print(MRR)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ucgis23workshop",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}