File size: 7,189 Bytes
ac736ed
5c91758
bc50d7d
3d81019
ebf50a4
 
b7111b8
 
3d8cd48
 
b7111b8
83e90d7
ac736ed
d914cbe
 
 
1aa7dda
3d81019
dc9ff0b
3d81019
 
d914cbe
3d81019
 
dc9ff0b
393b919
d914cbe
3be15aa
fbce538
 
 
3d81019
3be15aa
d914cbe
 
80744c0
 
 
3d81019
a74fa0d
3d8cd48
5914cea
 
 
3d8cd48
 
 
 
 
 
 
 
3d81019
a74fa0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f82dac8
1091141
f82dac8
 
 
 
 
 
 
 
 
 
3d81019
 
 
 
 
5c91758
 
83e90d7
9822204
3577a57
9822204
 
 
 
3577a57
 
d914cbe
3577a57
9822204
 
3577a57
9822204
b23060e
 
 
 
 
 
 
 
 
 
 
 
 
83e90d7
5c91758
 
b23060e
e72b522
 
 
 
 
 
 
5c91758
b23060e
e72b522
b4303dc
b23060e
b4303dc
 
 
 
 
 
 
 
83e90d7
3577a57
 
5c91758
b23060e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import streamlit as st
import spacy
import torch
from transformers import BertTokenizer, BertModel
from transformers.models.bert.modeling_bert import BertForMaskedLM

from models.spabert.models.spatial_bert_model import SpatialBertConfig, SpatialBertForMaskedLM, SpatialBertModel
from models.spabert.utils.common_utils import load_spatial_bert_pretrained_weights
from models.spabert.datasets.osm_sample_loader import PbfMapDataset
from torch.utils.data import DataLoader

from PIL import Image

device = torch.device('cpu')

#Spacy Initialization Section
nlp = spacy.load("./models/en_core_web_sm")

#BERT Initialization Section
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bert_model = BertModel.from_pretrained("bert-base-uncased")
bert_model.to(device)
bert_model.eval()

#SpaBERT Initialization Section
data_file_path = 'models/spabert/datasets/SPABERT_finetuning_data_combined.json'
pretrained_model_path = 'models/spabert/datasets/fine-spabert-base-uncased-finetuned-osm-mn.pth'

config = SpatialBertConfig()
config.output_hidden_states = True
spaBERT_model = SpatialBertForMaskedLM(config)

pre_trained_model = torch.load(pretrained_model_path, map_location=torch.device('cpu'))
spaBERT_model.load_state_dict(bert_model.state_dict(), strict = False)
spaBERT_model.load_state_dict(pre_trained_model, strict=False)

spaBERT_model.to(device)
spaBERT_model.eval()

#Load data using SpatialDataset
spatialDataset = PbfMapDataset(data_file_path = data_file_path,
                                        tokenizer = bert_tokenizer,
                                        max_token_len = 256,              #Originally 300
                                        #max_token_len = max_seq_length,              #Originally 300
                                        distance_norm_factor = 0.0001,
                                        spatial_dist_fill = 20,
                                        with_type = False,
                                        sep_between_neighbors = True,    #Initially false, play around with this potentially?
                                        label_encoder = None,             #Initially None, potentially change this because we do have real/fake reviews.
                                        mode = None)                      #If set to None it will use the full dataset for mlm

data_loader = DataLoader(spatialDataset, batch_size=1, num_workers=0, shuffle=False, pin_memory=False, drop_last=False) #issue needs to be fixed with num_workers not stopping after finished

#Pre-aquire the SpaBERT embeddings for all geo-entities within our dataset
def process_entity(batch, model, device):
    input_ids = batch['masked_input'].to(device)
    attention_mask = batch['attention_mask'].to(device)
    position_list_x = batch['norm_lng_list'].to(device)
    position_list_y = batch['norm_lat_list'].to(device)
    sent_position_ids = batch['sent_position_ids'].to(device)
    pseudo_sentence = batch['pseudo_sentence'].to(device)

    # Convert tensor to list of token IDs, and decode them into a readable sentence
    pseudo_sentence_decoded = tokenizer.decode(pseudo_sentence[0].tolist(), skip_special_tokens=False)

    with torch.no_grad():
        outputs = spaBERT_model(#input_ids=input_ids,
                        input_ids=pseudo_sentence,
                        attention_mask=attention_mask,
                        sent_position_ids=sent_position_ids,
                        position_list_x=position_list_x,
                        position_list_y=position_list_y)
                        #NOTE: we are ommitting the pseudo_sentence here. Verify that this is correct

    embeddings = outputs.hidden_states[-1].to(device)

    # Extract the [CLS] token embedding (first token)
    embedding = embeddings[:, 0, :].detach()  # [batch_size, hidden_size]

    #pivot_token_len = batch['pivot_token_len'].item()
    #pivot_embeddings = embeddings[:, :pivot_token_len, :]

    #return pivot_embeddings.cpu().numpy(), input_ids.cpu().numpy()
    return embedding.cpu().numpy(), input_ids.cpu().numpy()

all_embeddings = []
for batch in (data_loader):
  embeddings, input_ids = process_entity(batch, model, device)
  all_embeddings.append(embeddings)

st.write("SpaBERT Embedding shape:", all_embeddings[0].shape)
st.write("SpaBERT Embedding:", all_embeddings[0])



#Get BERT Embedding for review
def get_bert_embedding(review_text):
    #tokenize review
    inputs = bert_tokenizer(review_text, return_tensors='pt', padding=True, truncation=True).to(device)
    
    # Forward pass through the BERT model
    with torch.no_grad():
        outputs = bert_model(**inputs)

    # Extract embeddings from the last hidden state
    embeddings = outputs.last_hidden_state[:, 0, :].detach()     #CLS Token
    return embeddings





st.title("SpaGAN Demo")
st.write("Enter a text, and the system will highlight the geo-entities within it.")

# Define a color map and descriptions for different entity types
COLOR_MAP = {
    'FAC': ('red', 'Facilities (e.g., buildings, airports)'),
    'ORG': ('blue', 'Organizations (e.g., companies, institutions)'),
    'LOC': ('purple', 'Locations (e.g., mountain ranges, water bodies)'),
    'GPE': ('green', 'Geopolitical Entities (e.g., countries, cities)')
}

# Display the color key
st.write("**Color Key:**")
for label, (color, description) in COLOR_MAP.items():
    st.markdown(f"- **{label}**: <span style='color:{color}'>{color}</span> - {description}", unsafe_allow_html=True)

# Text input
#user_input = st.text_area("Input Text", height=200)

# Define example reviews for testing
example_reviews = {
    "Review 1": "I visited the Empire State Building in New York last summer, and it was amazing!",
    "Review 2": "Google, headquartered in Mountain View, is a leading tech company in the United States.",
}

# Dropdown for selecting an example review
user_input = st.selectbox("Select an example review", options=list(example_reviews.keys()))

# Get the selected review text
selected_review = example_reviews[user_input]

# Process the text when the button is clicked
if st.button("Highlight Geo-Entities"):
    if selected_review.strip():
        bert_embedding = get_bert_embedding(selected_review)
        # Debug: Print the shape of the embeddings
        st.write("Embedding Shape:", bert_embedding.shape)
        
        # Debug: Print the embeddings themselves (optional)
        st.write("Embeddings:", bert_embedding)
        
        # Process the text using spaCy
        doc = nlp(selected_review)
        
        # Highlight geo-entities with different colors
        highlighted_text = selected_review
        for ent in reversed(doc.ents):
            if ent.label_ in COLOR_MAP:
                color = COLOR_MAP[ent.label_][0]
                highlighted_text = (
                    highlighted_text[:ent.start_char] +
                    f"<span style='color:{color}; font-weight:bold'>{ent.text}</span>" + 
                    highlighted_text[ent.end_char:]
                )

        # Display the highlighted text with HTML support
        st.markdown(highlighted_text, unsafe_allow_html=True)
    else:
        st.error("Please select a review.")