Spaces:
Sleeping
Sleeping
File size: 4,624 Bytes
46e0dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import sys
import numpy as np
import json
import math
import torch
from transformers import RobertaTokenizer, BertTokenizer
from torch.utils.data import Dataset
sys.path.append('/home/zekun/spatial_bert/spatial_bert/datasets')
from dataset_loader import SpatialDataset
import pdb
'''Prepare candiate list given randomly sampled data and append to data_list'''
class Wikidata_Random_Dataset(SpatialDataset):
def __init__(self, data_file_path, tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=100, sep_between_neighbors = False):
if tokenizer is None:
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
else:
self.tokenizer = tokenizer
self.max_token_len = max_token_len
self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance
self.sep_between_neighbors = sep_between_neighbors
self.read_file(data_file_path)
super(Wikidata_Random_Dataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors )
def read_file(self, data_file_path):
with open(data_file_path, 'r') as f:
data = f.readlines()
len_data = len(data)
self.len_data = len_data
self.data = data
def load_data(self, index):
spatial_dist_fill = self.spatial_dist_fill
line = self.data[index] # take one line from the input data according to the index
line_data_dict = json.loads(line)
# process pivot
pivot_name = line_data_dict['info']['name']
pivot_pos = line_data_dict['info']['geometry']['coordinates']
pivot_uri = line_data_dict['info']['uri']
neighbor_info = line_data_dict['neighbor_info']
neighbor_name_list = neighbor_info['name_list']
neighbor_geometry_list = neighbor_info['geometry_list']
parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill )
parsed_data['uri'] = pivot_uri
parsed_data['description'] = None # placeholder
return parsed_data
def __len__(self):
return self.len_data
def __getitem__(self, index):
return self.load_data(index)
'''Prepare candiate list for each phrase and append to data_list'''
class Wikidata_Geocoord_Dataset(SpatialDataset):
#DEFAULT_CONFIG_CLS = SpatialBertConfig
def __init__(self, data_file_path, tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=100, sep_between_neighbors = False):
if tokenizer is None:
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
else:
self.tokenizer = tokenizer
self.max_token_len = max_token_len
self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance
self.sep_between_neighbors = sep_between_neighbors
self.read_file(data_file_path)
super(Wikidata_Geocoord_Dataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors )
def read_file(self, data_file_path):
with open(data_file_path, 'r') as f:
data = f.readlines()
len_data = len(data)
self.len_data = len_data
self.data = data
def load_data(self, index):
spatial_dist_fill = self.spatial_dist_fill
line = self.data[index] # take one line from the input data according to the index
line_data = json.loads(line)
parsed_data_list = []
for line_data_dict in line_data:
# process pivot
pivot_name = line_data_dict['info']['name']
pivot_pos = line_data_dict['info']['geometry']['coordinates']
pivot_uri = line_data_dict['info']['uri']
neighbor_info = line_data_dict['neighbor_info']
neighbor_name_list = neighbor_info['name_list']
neighbor_geometry_list = neighbor_info['geometry_list']
parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill )
parsed_data['uri'] = pivot_uri
parsed_data['description'] = None # placeholder
parsed_data_list.append(parsed_data)
return parsed_data_list
def __len__(self):
return self.len_data
def __getitem__(self, index):
return self.load_data(index)
|