File size: 4,624 Bytes
46e0dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import sys
import numpy as np
import json 
import math

import torch
from transformers import RobertaTokenizer, BertTokenizer
from torch.utils.data import Dataset
sys.path.append('/home/zekun/spatial_bert/spatial_bert/datasets')
from dataset_loader import SpatialDataset

import pdb

'''Prepare candiate list given randomly sampled data and append to data_list'''
class Wikidata_Random_Dataset(SpatialDataset): 
    def __init__(self, data_file_path,  tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=100, sep_between_neighbors = False):
        if tokenizer is None:
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        else:
            self.tokenizer = tokenizer

        self.max_token_len = max_token_len
        self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance
        self.sep_between_neighbors = sep_between_neighbors
        self.read_file(data_file_path)

        
        super(Wikidata_Random_Dataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors )

    def read_file(self, data_file_path):

        with open(data_file_path, 'r') as f:
            data = f.readlines()

        len_data = len(data)
        self.len_data = len_data
        self.data = data 

    def load_data(self, index):
        
        spatial_dist_fill = self.spatial_dist_fill
        line = self.data[index] # take one line from the input data according to the index

        line_data_dict = json.loads(line)

        # process pivot
        pivot_name = line_data_dict['info']['name']
        pivot_pos = line_data_dict['info']['geometry']['coordinates']
        pivot_uri = line_data_dict['info']['uri']

        neighbor_info = line_data_dict['neighbor_info']
        neighbor_name_list = neighbor_info['name_list']
        neighbor_geometry_list = neighbor_info['geometry_list']

        parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill )
        parsed_data['uri'] = pivot_uri
        parsed_data['description'] = None # placeholder

        return parsed_data

    def __len__(self):
        return self.len_data

    def __getitem__(self, index):
        return self.load_data(index)



'''Prepare candiate list for each phrase and append to data_list'''

class Wikidata_Geocoord_Dataset(SpatialDataset): 

    #DEFAULT_CONFIG_CLS = SpatialBertConfig
    def __init__(self, data_file_path,  tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=100, sep_between_neighbors = False):
        if tokenizer is None:
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        else:
            self.tokenizer = tokenizer

        self.max_token_len = max_token_len
        self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance
        self.sep_between_neighbors = sep_between_neighbors
        self.read_file(data_file_path)

        
        super(Wikidata_Geocoord_Dataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors )

    def read_file(self, data_file_path):

        with open(data_file_path, 'r') as f:
            data = f.readlines()

        len_data = len(data)
        self.len_data = len_data
        self.data = data 

    def load_data(self, index):
        
        spatial_dist_fill = self.spatial_dist_fill
        line = self.data[index] # take one line from the input data according to the index

        line_data = json.loads(line)
        parsed_data_list = []

        for line_data_dict in line_data:
            # process pivot
            pivot_name = line_data_dict['info']['name']
            pivot_pos = line_data_dict['info']['geometry']['coordinates']
            pivot_uri = line_data_dict['info']['uri']

            neighbor_info = line_data_dict['neighbor_info']
            neighbor_name_list = neighbor_info['name_list']
            neighbor_geometry_list = neighbor_info['geometry_list']

            parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill )
            parsed_data['uri'] = pivot_uri
            parsed_data['description'] = None # placeholder
            parsed_data_list.append(parsed_data)

        return parsed_data_list


    def __len__(self):
        return self.len_data

    def __getitem__(self, index):
        return self.load_data(index)