File size: 10,184 Bytes
46e0dd0
 
 
 
 
 
 
 
 
 
97bda4d
 
 
46e0dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import sys
import numpy as np
import json 
import math

import torch
from transformers import RobertaTokenizer, BertTokenizer
from torch.utils.data import Dataset
#sys.path.append('/home/zekun/spatial_bert/spatial_bert/datasets')
#sys.path.append('/content/drive/MyDrive/spaBERT/spabert/datasets')
from models.spabert.datasets.dataset_loader_ver2 import SpatialDataset
#from dataset_loader_ver2 import SpatialDataset

import pdb

class PbfMapDataset(SpatialDataset):
    def __init__(self, data_file_path,  tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=10, 
        with_type = True, sep_between_neighbors = False, label_encoder = None, mode = None, num_neighbor_limit = None, random_remove_neighbor = 0.,type_key_str='class'):
        
        if tokenizer is None:
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        else:
            self.tokenizer = tokenizer

        self.max_token_len = max_token_len
        self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance
        self.with_type = with_type
        self.sep_between_neighbors = sep_between_neighbors
        self.label_encoder = label_encoder
        self.num_neighbor_limit = num_neighbor_limit
        self.read_file(data_file_path, mode)
        self.random_remove_neighbor = random_remove_neighbor
        self.type_key_str  = type_key_str # key name of the class type in the input data dictionary
 
        super(PbfMapDataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors )
        

    def read_file(self, data_file_path, mode):

        with open(data_file_path, 'r') as f:
            data = f.readlines()

        if mode == 'train':
            data = data[0:int(len(data) * 0.8)]
        elif mode == 'test':
            data = data[int(len(data) * 0.8):]
        elif mode is None: # use the full dataset (for mlm)
            pass
        else:
            raise NotImplementedError

        self.len_data = len(data) # updated data length
        self.data = data 

    def load_data(self, index):
        
        spatial_dist_fill = self.spatial_dist_fill
        line = self.data[index] # take one line from the input data according to the index

        line_data_dict = json.loads(line)

        # process pivot
        pivot_name = line_data_dict['info']['name']
        pivot_pos = line_data_dict['info']['geometry']['coordinates']

        
        neighbor_info = line_data_dict['neighbor_info']
        neighbor_name_list = neighbor_info['name_list']
        neighbor_geometry_list = neighbor_info['geometry_list']

        if self.random_remove_neighbor != 0:
            num_neighbors = len(neighbor_name_list)
            rand_neighbor = np.random.uniform(size = num_neighbors)

            neighbor_keep_arr = (rand_neighbor >= self.random_remove_neighbor) # select the neighbors to be removed
            neighbor_keep_arr = np.where(neighbor_keep_arr)[0]
            
            new_neighbor_name_list, new_neighbor_geometry_list = [],[]
            for i in range(0, num_neighbors):
                if i in neighbor_keep_arr:
                    new_neighbor_name_list.append(neighbor_name_list[i])
                    new_neighbor_geometry_list.append(neighbor_geometry_list[i])

            neighbor_name_list = new_neighbor_name_list
            neighbor_geometry_list = new_neighbor_geometry_list
        
        if self.num_neighbor_limit is not None:
            neighbor_name_list = neighbor_name_list[0:self.num_neighbor_limit]
            neighbor_geometry_list = neighbor_geometry_list[0:self.num_neighbor_limit]


        train_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill )

        if self.with_type:
            pivot_type = line_data_dict['info'][self.type_key_str]
            train_data['pivot_type'] = torch.tensor(self.label_encoder.transform([pivot_type])[0]) # scalar, label_id

        if 'ogc_fid' in line_data_dict['info']:
            train_data['ogc_fid'] = line_data_dict['info']['ogc_fid']

        return train_data

    def __len__(self):
        return self.len_data

    def __getitem__(self, index):
        return self.load_data(index)



class PbfMapDatasetMarginRanking(SpatialDataset):
    def __init__(self, data_file_path,  type_list = None, tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=10, 
        sep_between_neighbors = False,  mode = None, num_neighbor_limit = None, random_remove_neighbor = 0., type_key_str='class'):
        
        if tokenizer is None:
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        else:
            self.tokenizer = tokenizer

        self.type_list  = type_list
        self.type_key_str  = type_key_str # key name of the class type in the input data dictionary
        self.max_token_len = max_token_len
        self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance
        self.sep_between_neighbors = sep_between_neighbors
        # self.label_encoder = label_encoder
        self.num_neighbor_limit = num_neighbor_limit
        self.read_file(data_file_path, mode)
        self.random_remove_neighbor = random_remove_neighbor
        self.mode = mode
        
 
        super(PbfMapDatasetMarginRanking, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors )
        

    def read_file(self, data_file_path, mode):

        with open(data_file_path, 'r') as f:
            data = f.readlines()

        if mode == 'train':
            data = data[0:int(len(data) * 0.8)]
        elif mode == 'test':
            data = data[int(len(data) * 0.8):]
            self.all_types_data = self.prepare_all_types_data()
        elif mode is None: # use the full dataset (for mlm)
            pass
        else:
            raise NotImplementedError

        self.len_data = len(data) # updated data length
        self.data = data 

    def prepare_all_types_data(self):
        type_list = self.type_list
        spatial_dist_fill = self.spatial_dist_fill
        type_data_dict = dict()
        for type_name in type_list:
            type_pos = [None, None] # use filler values
            type_data = self.parse_spatial_context(type_name, type_pos, pivot_dist_fill = 0.,
                neighbor_name_list = [], neighbor_geometry_list=[], spatial_dist_fill= spatial_dist_fill)
            type_data_dict[type_name] = type_data

        return type_data_dict

    def load_data(self, index):
        
        spatial_dist_fill = self.spatial_dist_fill
        line = self.data[index] # take one line from the input data according to the index

        line_data_dict = json.loads(line)

        # process pivot
        pivot_name = line_data_dict['info']['name']
        pivot_pos = line_data_dict['info']['geometry']['coordinates']

        
        neighbor_info = line_data_dict['neighbor_info']
        neighbor_name_list = neighbor_info['name_list']
        neighbor_geometry_list = neighbor_info['geometry_list']

        if self.random_remove_neighbor != 0:
            num_neighbors = len(neighbor_name_list)
            rand_neighbor = np.random.uniform(size = num_neighbors)

            neighbor_keep_arr = (rand_neighbor >= self.random_remove_neighbor) # select the neighbors to be removed
            neighbor_keep_arr = np.where(neighbor_keep_arr)[0]
            
            new_neighbor_name_list, new_neighbor_geometry_list = [],[]
            for i in range(0, num_neighbors):
                if i in neighbor_keep_arr:
                    new_neighbor_name_list.append(neighbor_name_list[i])
                    new_neighbor_geometry_list.append(neighbor_geometry_list[i])

            neighbor_name_list = new_neighbor_name_list
            neighbor_geometry_list = new_neighbor_geometry_list
        
        if self.num_neighbor_limit is not None:
            neighbor_name_list = neighbor_name_list[0:self.num_neighbor_limit]
            neighbor_geometry_list = neighbor_geometry_list[0:self.num_neighbor_limit]


        train_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill )

        if 'ogc_fid' in line_data_dict['info']:
            train_data['ogc_fid'] = line_data_dict['info']['ogc_fid']

        # train_data['pivot_type'] = torch.tensor(self.label_encoder.transform([pivot_type])[0]) # scalar, label_id
        
        pivot_type = line_data_dict['info'][self.type_key_str]
        train_data['pivot_type'] = pivot_type

        if self.mode == 'train':
            # postive class
            postive_name = pivot_type # class type string as input to tokenizer
            positive_pos = [None, None] # use filler values
            postive_type_data = self.parse_spatial_context(postive_name, positive_pos, pivot_dist_fill = 0.,
                neighbor_name_list = [], neighbor_geometry_list=[], spatial_dist_fill= spatial_dist_fill)
            train_data['positive_type_data'] = postive_type_data


            # negative class
            other_type_list = self.type_list.copy()
            other_type_list.remove(pivot_type)
            other_type = np.random.choice(other_type_list)
            negative_name = other_type 
            negative_pos = [None, None] # use filler values
            negative_type_data = self.parse_spatial_context(negative_name, negative_pos, pivot_dist_fill = 0.,
                neighbor_name_list = [], neighbor_geometry_list=[], spatial_dist_fill= spatial_dist_fill)
            train_data['negative_type_data'] = negative_type_data

        elif self.mode == 'test':
            # return data for all class types in type_list
            train_data['all_types_data'] = self.all_types_data

        else:
            raise NotImplementedError

        return train_data

    def __len__(self):
        return self.len_data

    def __getitem__(self, index):
        return self.load_data(index)