File size: 3,831 Bytes
ac736ed
5c91758
bc50d7d
3d81019
ebf50a4
 
b7111b8
 
 
83e90d7
ac736ed
d914cbe
 
 
1aa7dda
3d81019
dc9ff0b
3d81019
 
d914cbe
3d81019
 
dc9ff0b
393b919
d914cbe
3be15aa
fbce538
 
 
3d81019
3be15aa
d914cbe
 
80744c0
 
 
3d81019
 
f82dac8
1091141
f82dac8
 
 
 
 
 
 
 
 
 
3d81019
 
 
 
 
5c91758
 
83e90d7
9822204
3577a57
9822204
 
 
 
3577a57
 
d914cbe
3577a57
9822204
 
3577a57
9822204
b23060e
 
 
 
 
 
 
 
 
 
 
 
 
83e90d7
5c91758
 
b23060e
5c91758
b23060e
83e90d7
b4303dc
b23060e
b4303dc
 
 
 
 
 
 
 
83e90d7
3577a57
 
5c91758
b23060e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import spacy
import torch
from transformers import BertTokenizer, BertModel
from transformers.models.bert.modeling_bert import BertForMaskedLM

from models.spabert.models.spatial_bert_model import SpatialBertConfig, SpatialBertForMaskedLM, SpatialBertModel
from models.spabert.utils.common_utils import load_spatial_bert_pretrained_weights

from PIL import Image

device = torch.device('cpu')

#Spacy Initialization Section
nlp = spacy.load("./models/en_core_web_sm")

#BERT Initialization Section
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bert_model = BertModel.from_pretrained("bert-base-uncased")
bert_model.to(device)
bert_model.eval()

#SpaBERT Initialization Section
data_file_path = 'models/spabert/datasets/SPABERT_finetuning_data_combined.json'
pretrained_model_path = 'models/spabert/datasets/fine-spabert-base-uncased-finetuned-osm-mn.pth'

config = SpatialBertConfig()
config.output_hidden_states = True
spaBERT_model = SpatialBertForMaskedLM(config)

pre_trained_model = torch.load(pretrained_model_path, map_location=torch.device('cpu'))
spaBERT_model.load_state_dict(bert_model.state_dict(), strict = False)
spaBERT_model.load_state_dict(pre_trained_model, strict=False)

spaBERT_model.to(device)
spaBERT_model.eval()


#Get BERT Embedding for review
def get_bert_embedding(review_text):
    #tokenize review
    inputs = bert_tokenizer(review_text, return_tensors='pt', padding=True, truncation=True).to(device)
    
    # Forward pass through the BERT model
    with torch.no_grad():
        outputs = bert_model(**inputs)

    # Extract embeddings from the last hidden state
    embeddings = outputs.last_hidden_state[:, 0, :].detach()     #CLS Token
    return embeddings





st.title("SpaGAN Demo")
st.write("Enter a text, and the system will highlight the geo-entities within it.")

# Define a color map and descriptions for different entity types
COLOR_MAP = {
    'FAC': ('red', 'Facilities (e.g., buildings, airports)'),
    'ORG': ('blue', 'Organizations (e.g., companies, institutions)'),
    'LOC': ('purple', 'Locations (e.g., mountain ranges, water bodies)'),
    'GPE': ('green', 'Geopolitical Entities (e.g., countries, cities)')
}

# Display the color key
st.write("**Color Key:**")
for label, (color, description) in COLOR_MAP.items():
    st.markdown(f"- **{label}**: <span style='color:{color}'>{color}</span> - {description}", unsafe_allow_html=True)

# Text input
#user_input = st.text_area("Input Text", height=200)

# Define example reviews for testing
example_reviews = {
    "Review 1": "I visited the Empire State Building in New York last summer, and it was amazing!",
    "Review 2": "Google, headquartered in Mountain View, is a leading tech company in the United States.",
}

# Dropdown for selecting an example review
user_input = st.selectbox("Select an example review", options=list(example_reviews.keys()))

# Get the selected review text
selected_review = example_reviews[user_input]

# Process the text when the button is clicked
if st.button("Highlight Geo-Entities"):
    if selected_review.strip():
        # Process the text using spaCy
        doc = nlp(selected_review)

        # Highlight geo-entities with different colors
        highlighted_text = selected_review
        for ent in reversed(doc.ents):
            if ent.label_ in COLOR_MAP:
                color = COLOR_MAP[ent.label_][0]
                highlighted_text = (
                    highlighted_text[:ent.start_char] +
                    f"<span style='color:{color}; font-weight:bold'>{ent.text}</span>" + 
                    highlighted_text[ent.end_char:]
                )

        # Display the highlighted text with HTML support
        st.markdown(highlighted_text, unsafe_allow_html=True)
    else:
        st.error("Please select a review.")