Prueba_1 / app.py
JaphetHernandez's picture
Update app.py
219f9d3 verified
raw
history blame
3.6 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import streamlit as st
from huggingface_hub import login
import pandas as pd
from threading import Thread
# Token Secret de Hugging Face
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
login(huggingface_token)
# Cambiar a la versi贸n Meta Llama 3.1 3B
model_id = "meta-llama/Llama-3.2-1B"
# Cargar el tokenizador y el modelo
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer.pad_token = tokenizer.eos_token
# Definir longitud m谩xima de tokens
MAX_INPUT_TOKEN_LENGTH = 4096
def generate_response(input_text, temperature=0.7, max_new_tokens=50):
"""Funci贸n de generaci贸n de texto con el modelo."""
input_ids = tokenizer.encode(input_text, return_tensors='pt')
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=temperature != 0,
top_k=50, # Limita las palabras m谩s probables a 50
top_p=0.9, # Considera solo el 90% de la probabilidad acumulada
temperature=temperature,
eos_token_id=[tokenizer.eos_token_id]
)
# Generaci贸n de texto en un hilo separado
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
# Devolver la respuesta completa
return "".join(outputs)
def main():
st.title("Chat con Meta Llama 3.1 3B")
# Paso 1: Subir el archivo CSV
uploaded_file = st.file_uploader("Por favor, sube un archivo CSV para iniciar:", type=["csv"])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
query = "aspiring human resources specialist"
st.write("Archivo CSV cargado exitosamente:")
st.write(df.head()) # Mostrar las primeras filas del dataframe
job_titles = df['job_title'].tolist()
# Prompt inicial
initial_prompt = (""""
f"You are an AI assistant. You have a list of job titles in {job_titles} and a search query {query}.\n"
f"Your task is to rank these job titles {job_titles} by their semantic similarity to the given query {query} using the cosine similarity score.\n "
f"Create a dataframe called df_2 that includes a column 'titles' with the values of {job_titles} and a new column called 'score' in which you will record the cosine similarity score that you calculated previously.\n"
f"Finally, print df_2 in the screen"
"""
)
st.write(f"Query: {query}")
st.write(f"Prompt inicial: {initial_prompt}")
# Generar la respuesta del modelo
if st.button("Generar respuesta"):
with st.spinner("Generando respuesta..."):
response = generate_response(initial_prompt) # Obtener la primera respuesta completa
st.write(f"Respuesta del modelo: {response}")
# Terminar la conversaci贸n
st.success("La conversaci贸n ha terminado.")
# Opci贸n para reiniciar o finalizar
if st.button("Iniciar nueva conversaci贸n"):
st.experimental_rerun() # Reinicia la aplicaci贸n
elif st.button("Terminar"):
st.stop()
if __name__ == "__main__":
main()