import numpy as np import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM def flip_text(x): return x[::-1] def flip_image(x): return np.fliplr(x) tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") def generate_summary(text): print(text) inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True) summary_ids = model.generate(inputs['input_ids'], max_new_tokens=100, do_sample=False) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary with gr.Blocks() as main: gr.Markdown("My AI interface") with gr.Tab("Single models"): text_to_summarize = gr.Textbox(label="Text to summarize") summary_output = gr.Textbox(label="Summary") summarize_btn = gr.Button("Summarize") with gr.Tab("Multi models"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") # text_button.click(flip_text, inputs=text_input, outputs=text_output) image_button.click(flip_image, inputs=image_input, outputs=image_output) summarize_btn.click(generate_summary, inputs=text_to_summarize, outputs=summary_output) main.launch()