Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -58,14 +58,14 @@ model_vaq_g = GumbelVQ(
|
|
58 |
transform = T.Compose([
|
59 |
T.Resize((256, 256)),
|
60 |
T.ToTensor(),
|
61 |
-
T.Normalize(mean=[0
|
62 |
|
63 |
#_________________Define:Gradio Function________________________
|
64 |
|
65 |
def gen_sources(deepfake_img):
|
66 |
#----------------DeepFake Face Segmentation-----------------
|
67 |
segmenter = FaceSegmenter(threshold=0.5)
|
68 |
-
img_np = np.array(deepfake_img)
|
69 |
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
70 |
segmented_np = segmenter.segment_face(img_bgr)
|
71 |
deepfake_seg = Image.fromarray(cv2.cvtColor(segmented_np, cv2.COLOR_BGR2RGB))
|
@@ -92,7 +92,7 @@ def gen_sources(deepfake_img):
|
|
92 |
criterion = DF()
|
93 |
|
94 |
with torch.no_grad():
|
95 |
-
df_img = transform(deepfake_img).unsqueeze(0).to(device)
|
96 |
seg_img = transform(deepfake_seg).unsqueeze(0).to(device)
|
97 |
|
98 |
z_df, _, _ = model_vaq_f.encode(df_img)
|
|
|
58 |
transform = T.Compose([
|
59 |
T.Resize((256, 256)),
|
60 |
T.ToTensor(),
|
61 |
+
T.Normalize(mean=[0, 0, 0], std=[1, 1, 1])]) # Normalize to [-1, 1]
|
62 |
|
63 |
#_________________Define:Gradio Function________________________
|
64 |
|
65 |
def gen_sources(deepfake_img):
|
66 |
#----------------DeepFake Face Segmentation-----------------
|
67 |
segmenter = FaceSegmenter(threshold=0.5)
|
68 |
+
img_np = np.array(deepfake_img.convert('RGB'))
|
69 |
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
70 |
segmented_np = segmenter.segment_face(img_bgr)
|
71 |
deepfake_seg = Image.fromarray(cv2.cvtColor(segmented_np, cv2.COLOR_BGR2RGB))
|
|
|
92 |
criterion = DF()
|
93 |
|
94 |
with torch.no_grad():
|
95 |
+
df_img = transform(deepfake_img.convert('RGB')).unsqueeze(0).to(device)
|
96 |
seg_img = transform(deepfake_seg).unsqueeze(0).to(device)
|
97 |
|
98 |
z_df, _, _ = model_vaq_f.encode(df_img)
|