uncovering_deepfake_image / taming /data /image_transforms.py
Jannat24's picture
taming_transformer
9101b75
import random
import warnings
from typing import Union
import torch
from torch import Tensor
from torchvision.transforms import RandomCrop, functional as F, CenterCrop, RandomHorizontalFlip, PILToTensor
from torchvision.transforms.functional import _get_image_size as get_image_size
from taming.data.helper_types import BoundingBox, Image
pil_to_tensor = PILToTensor()
def convert_pil_to_tensor(image: Image) -> Tensor:
with warnings.catch_warnings():
# to filter PyTorch UserWarning as described here: https://github.com/pytorch/vision/issues/2194
warnings.simplefilter("ignore")
return pil_to_tensor(image)
class RandomCrop1dReturnCoordinates(RandomCrop):
def forward(self, img: Image) -> (BoundingBox, Image):
"""
Additionally to cropping, returns the relative coordinates of the crop bounding box.
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
Bounding box: x0, y0, w, h
PIL Image or Tensor: Cropped image.
Based on:
torchvision.transforms.RandomCrop, torchvision 1.7.0
"""
if self.padding is not None:
img = F.pad(img, self.padding, self.fill, self.padding_mode)
width, height = get_image_size(img)
# pad the width if needed
if self.pad_if_needed and width < self.size[1]:
padding = [self.size[1] - width, 0]
img = F.pad(img, padding, self.fill, self.padding_mode)
# pad the height if needed
if self.pad_if_needed and height < self.size[0]:
padding = [0, self.size[0] - height]
img = F.pad(img, padding, self.fill, self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
bbox = (j / width, i / height, w / width, h / height) # x0, y0, w, h
return bbox, F.crop(img, i, j, h, w)
class Random2dCropReturnCoordinates(torch.nn.Module):
"""
Additionally to cropping, returns the relative coordinates of the crop bounding box.
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
Bounding box: x0, y0, w, h
PIL Image or Tensor: Cropped image.
Based on:
torchvision.transforms.RandomCrop, torchvision 1.7.0
"""
def __init__(self, min_size: int):
super().__init__()
self.min_size = min_size
def forward(self, img: Image) -> (BoundingBox, Image):
width, height = get_image_size(img)
max_size = min(width, height)
if max_size <= self.min_size:
size = max_size
else:
size = random.randint(self.min_size, max_size)
top = random.randint(0, height - size)
left = random.randint(0, width - size)
bbox = left / width, top / height, size / width, size / height
return bbox, F.crop(img, top, left, size, size)
class CenterCropReturnCoordinates(CenterCrop):
@staticmethod
def get_bbox_of_center_crop(width: int, height: int) -> BoundingBox:
if width > height:
w = height / width
h = 1.0
x0 = 0.5 - w / 2
y0 = 0.
else:
w = 1.0
h = width / height
x0 = 0.
y0 = 0.5 - h / 2
return x0, y0, w, h
def forward(self, img: Union[Image, Tensor]) -> (BoundingBox, Union[Image, Tensor]):
"""
Additionally to cropping, returns the relative coordinates of the crop bounding box.
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
Bounding box: x0, y0, w, h
PIL Image or Tensor: Cropped image.
Based on:
torchvision.transforms.RandomHorizontalFlip (version 1.7.0)
"""
width, height = get_image_size(img)
return self.get_bbox_of_center_crop(width, height), F.center_crop(img, self.size)
class RandomHorizontalFlipReturn(RandomHorizontalFlip):
def forward(self, img: Image) -> (bool, Image):
"""
Additionally to flipping, returns a boolean whether it was flipped or not.
Args:
img (PIL Image or Tensor): Image to be flipped.
Returns:
flipped: whether the image was flipped or not
PIL Image or Tensor: Randomly flipped image.
Based on:
torchvision.transforms.RandomHorizontalFlip (version 1.7.0)
"""
if torch.rand(1) < self.p:
return True, F.hflip(img)
return False, img