|
from itertools import cycle |
|
from typing import List, Tuple, Callable, Optional |
|
|
|
from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont |
|
from more_itertools.recipes import grouper |
|
from taming.data.image_transforms import convert_pil_to_tensor |
|
from torch import LongTensor, Tensor |
|
|
|
from taming.data.helper_types import BoundingBox, Annotation |
|
from taming.data.conditional_builder.objects_center_points import ObjectsCenterPointsConditionalBuilder |
|
from taming.data.conditional_builder.utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, additional_parameters_string, \ |
|
pad_list, get_plot_font_size, absolute_bbox |
|
|
|
|
|
class ObjectsBoundingBoxConditionalBuilder(ObjectsCenterPointsConditionalBuilder): |
|
@property |
|
def object_descriptor_length(self) -> int: |
|
return 3 |
|
|
|
def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]: |
|
object_triples = [ |
|
(self.object_representation(ann), *self.token_pair_from_bbox(ann.bbox)) |
|
for ann in annotations |
|
] |
|
empty_triple = (self.none, self.none, self.none) |
|
object_triples = pad_list(object_triples, empty_triple, self.no_max_objects) |
|
return object_triples |
|
|
|
def inverse_build(self, conditional: LongTensor) -> Tuple[List[Tuple[int, BoundingBox]], Optional[BoundingBox]]: |
|
conditional_list = conditional.tolist() |
|
crop_coordinates = None |
|
if self.encode_crop: |
|
crop_coordinates = self.bbox_from_token_pair(conditional_list[-2], conditional_list[-1]) |
|
conditional_list = conditional_list[:-2] |
|
object_triples = grouper(conditional_list, 3) |
|
assert conditional.shape[0] == self.embedding_dim |
|
return [ |
|
(object_triple[0], self.bbox_from_token_pair(object_triple[1], object_triple[2])) |
|
for object_triple in object_triples if object_triple[0] != self.none |
|
], crop_coordinates |
|
|
|
def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int], |
|
line_width: int = 3, font_size: Optional[int] = None) -> Tensor: |
|
plot = pil_image.new('RGB', figure_size, WHITE) |
|
draw = pil_img_draw.Draw(plot) |
|
font = ImageFont.truetype( |
|
"/usr/share/fonts/truetype/lato/Lato-Regular.ttf", |
|
size=get_plot_font_size(font_size, figure_size) |
|
) |
|
width, height = plot.size |
|
description, crop_coordinates = self.inverse_build(conditional) |
|
for (representation, bbox), color in zip(description, cycle(COLOR_PALETTE)): |
|
annotation = self.representation_to_annotation(representation) |
|
class_label = label_for_category_no(annotation.category_no) + ' ' + additional_parameters_string(annotation) |
|
bbox = absolute_bbox(bbox, width, height) |
|
draw.rectangle(bbox, outline=color, width=line_width) |
|
draw.text((bbox[0] + line_width, bbox[1] + line_width), class_label, anchor='la', fill=BLACK, font=font) |
|
if crop_coordinates is not None: |
|
draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width) |
|
return convert_pil_to_tensor(plot) / 127.5 - 1. |
|
|