File size: 5,352 Bytes
cae99db
 
 
 
 
 
 
da52bc4
cae99db
 
 
 
 
 
da52bc4
 
 
 
 
 
 
 
cae99db
da52bc4
 
 
 
 
cae99db
 
 
da52bc4
cae99db
 
da52bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae99db
da52bc4
 
 
cae99db
da52bc4
 
 
 
 
 
cae99db
da52bc4
 
 
 
 
 
 
 
 
 
 
 
 
cae99db
 
 
 
 
da52bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae99db
 
 
 
da52bc4
 
 
cae99db
 
fb1bd05
cae99db
da52bc4
 
cae99db
 
da52bc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import io
import os
import shutil
import requests
import numpy as np
from PIL import Image, ImageOps
import math
import matplotlib.pyplot as plt
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torch.utils.checkpoint import checkpoint  
from torchvision.models import vgg16
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.functional import structural_similarity_index_measure
from facenet_pytorch import InceptionResnetV1
from taming.models.vqgan import VQModel
from omegaconf import OmegaConf
from taming.models.vqgan import GumbelVQ
import gradio as gr
from finetunedvqgan import Generator
from modelz import DeepfakeToSourceTransformer
from frameworkeval import DF
from segmentface import FaceSegmenter
from denormalize import denormalize_bin, denormalize_tr, denormalize_ar

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

##________________________Transformation______________________________

transform = T.Compose([
    T.Resize((256, 256)),   
    T.ToTensor(),         
    T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])  # Normalize to [-1, 1]

#_________________Define:Gradio Function________________________

def gen_sources(deepfake_img):
    #----------------DeepFake Face Segmentation-----------------
    deepfake_seg = segmenter.segment_face(deepfake_img)
    config_path = "./config.yaml"
    #------------Initialize:Decoder-F------------------------
    checkpoint_path_f = "./model_vaq1_ff.pth"
    checkpoint_f = torch.load(checkpoint_path_f, map_location=device)
    model_vaq_f = Generator(config_path)
    model_vaq_f = model_vaq_f.load_state_dict(checkpoint_f, strict=True)
    model_vaq_f.eval()
    #------------Initialize:Decoder-G------------------------
    checkpoint_path_g = "./model_vaq2_gg.pth"
    checkpoint_g = torch.load(checkpoint_path_g, map_location=device)
    model_vaq_g = Generator(config_path)
    model_vaq_g = model_vaq_g.load_state_dict(checkpoint_g, strict=True)
    model_vaq_g.eval()
    ##------------------------Initialize Model-F-------------------------------------
    model_z1 = DeepfakeToSourceTransformer().to(device)
    model_z1.load_state_dict(torch.load("./model_z1_ff.pth",map_location=device),strict=True)
    model_z1.eval()
    ##------------------------Initialize Model-G-------------------------------------
    model_z2 = DeepfakeToSourceTransformer().to(device)
    model_z2.load_state_dict(torch.load("./model_z2_gg.pth",map_location=device),strict=True)
    model_z2.eval()
    ##--------------------Initialize:Evaluation---------------------------------------
    criterion = DF()
    ##----------------------Initialize:Face Segmentation----------------------------------
    segmenter = FaceSegmenter(threshold=0.5)
    
    ##----------------------Operation-------------------------------------------------
    with torch.no_grad():
        # Load and preprocess input image
        img = Image.open(deepfake_img).convert('RGB')
        segimg = Image.open(deepfake_seg).convert('RGB')
        df_img = transform(img).unsqueeze(0).to(device)  # Shape: (1, 3, 256, 256)
        seg_img = transform(segimg).unsqueeze(0).to(device)
        
        # Calculate quantized_block for all images
        z_df, _, _ = model_vaq_f.encode(df_img) 
        z_seg, _, _ = model_vaq_g.encode(seg_img) 
        rec_z_img1 = model_z1(z_df) 
        rec_z_img2 = model_z2(z_seg) 
        rec_img1 = model_vaq_f.decode(rec_z_img1)
        rec_img2 = model_vaq_g.decode(rec_z_img2)
        rec_img1 = rec_img1.squeeze(0)
        rec_img2 = rec_img2.squeeze(0)
        rec_img1_pil = T.ToPILImage()(rec_img1)
        rec_img2_pil = T.ToPILImage()(rec_img2)

        # Save PIL images to in-memory buffers
        buffer1 = BytesIO()
        buffer2 = BytesIO()
        rec_img1_pil.save(buffer1, format="PNG")
        rec_img2_pil.save(buffer2, format="PNG")

        # Pass buffers to Gradio client
        result = client.predict(
            target=file(buffer1),
            source=file(buffer2), slider=100, adv_slider=100,
            settings=["Adversarial Defense"], api_name="/run_inference"
        )

        # Load result and compute loss
        dfimage_pil = Image.open(result)  # Open the resulting image
        buffer3 = BytesIO()
        dfimage_pil.save(buffer3, format="PNG")
        rec_df = transform(Image.open(buffer3)).unsqueeze(0).to(device)
        rec_loss,_ = criterion(df_img, rec_df)

        return (rec_img1_pil, rec_img2_pil, dfimage_pil, round(rec_loss.item(),3))

#________________________Create the Gradio interface_________________________________
interface = gr.Interface(
    fn=gen_sources,
    inputs=gr.Image(type="pil", label="Input Image"),
    outputs=[
        gr.Image(type="pil", label="Recovered Source Image 1 (Target Image)"),
        gr.Image(type="pil", label="Recovered Source Image 2 (Source Image)"),
        gr.Image(type="pil", label="Reconstructed Deepfake Image"),
        gr.Number(label="Reconstruction Loss")
    ],
    examples = ["./df1.jpg","./df2.jpg","./df3.jpg","./df4.jpg"],
    theme = gr.themes.Soft(),
    title="Uncovering Deepfake Image for Identifying Source Images",
    description="Upload an DeepFake image.",
)

interface.launch()