Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,25 @@ from PIL import Image
|
|
5 |
# Initialize the pipeline with the image captioning model
|
6 |
caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Setup the Gradio interface
|
15 |
-
interface = gr.Interface(fn=
|
16 |
inputs=gr.components.Image(type="pil", label="Upload an Image"),
|
17 |
-
outputs=gr.components.Textbox(label="Generated Caption"))
|
18 |
interface.launch()
|
|
|
|
5 |
# Initialize the pipeline with the image captioning model
|
6 |
caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
7 |
|
8 |
+
# Initialize the pipeline for emotion classification
|
9 |
+
emotion_pipeline = pipeline("image-classification", model="RickyIG/emotion_face_image_classification_v3")
|
10 |
+
|
11 |
+
def generate_caption_and_emotion(image):
|
12 |
+
# Process the image for captioning
|
13 |
+
caption_result = caption_pipeline(image)
|
14 |
+
caption = caption_result[0]["generated_text"]
|
15 |
+
|
16 |
+
# Process the image for emotion classification
|
17 |
+
emotion_result = emotion_pipeline(image)
|
18 |
+
emotions = ", ".join([f"{res['label']}: {res['score']:.2f}" for res in emotion_result])
|
19 |
+
|
20 |
+
# Combine results
|
21 |
+
combined_result = f"Caption: {caption}\nEmotions: {emotions}"
|
22 |
+
return combined_result
|
23 |
|
24 |
# Setup the Gradio interface
|
25 |
+
interface = gr.Interface(fn=generate_caption_and_emotion,
|
26 |
inputs=gr.components.Image(type="pil", label="Upload an Image"),
|
27 |
+
outputs=gr.components.Textbox(label="Generated Caption and Emotions"))
|
28 |
interface.launch()
|
29 |
+
|