Jangai commited on
Commit
a2142f7
·
verified ·
1 Parent(s): 233cb08

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -1,22 +1,18 @@
1
  import gradio as gr
2
- from PIL import Image
3
  from transformers import pipeline
 
4
 
5
  # Initialize the pipeline with the image captioning model
6
  caption_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
7
 
8
  def generate_caption(image):
9
- # Convert the PIL Image to the format expected by the model
10
- image = Image.open(image).convert("RGB")
11
-
12
- # Use the pipeline to generate a caption
13
  result = caption_pipeline(image)
14
  caption = result[0]["generated_text"]
15
-
16
  return caption
17
 
18
  # Setup the Gradio interface
19
  interface = gr.Interface(fn=generate_caption,
20
- inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
21
  outputs=gr.outputs.Textbox(label="Generated Caption"))
22
  interface.launch()
 
1
  import gradio as gr
 
2
  from transformers import pipeline
3
+ from PIL import Image
4
 
5
  # Initialize the pipeline with the image captioning model
6
  caption_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
7
 
8
  def generate_caption(image):
9
+ # The image is received as a PIL Image, so no need for conversion
 
 
 
10
  result = caption_pipeline(image)
11
  caption = result[0]["generated_text"]
 
12
  return caption
13
 
14
  # Setup the Gradio interface
15
  interface = gr.Interface(fn=generate_caption,
16
+ inputs=gr.inputs.Image(label="Upload an Image", type="pil"),
17
  outputs=gr.outputs.Textbox(label="Generated Caption"))
18
  interface.launch()