Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,22 @@
|
|
1 |
-
import
|
2 |
from PIL import Image
|
3 |
-
|
4 |
-
import torch as T
|
5 |
-
import transformers
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
10 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(PATH_LLAVA).cuda()
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Example: Generate a simple instruction based on the image
|
27 |
-
# This is a placeholder. You would replace this with your own method
|
28 |
-
# to analyze the image and generate a textual description or instruction.
|
29 |
-
instruction = "Describe what to do with this image."
|
30 |
-
|
31 |
-
# Simplify and generate expressive instruction
|
32 |
-
expressive_instruction = remove_alter(instruction)
|
33 |
-
print("Expressive Instruction:", expressive_instruction)
|
34 |
-
|
35 |
-
# Example usage
|
36 |
-
image_path = './path/to/your/image.jpg' # Update this path to your image
|
37 |
-
load_image_and_generate_instruction(image_path)
|
|
|
1 |
+
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline
|
|
|
|
|
4 |
|
5 |
+
# Initialize the pipeline with the image captioning model
|
6 |
+
caption_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
|
|
|
|
7 |
|
8 |
+
def generate_caption(image):
|
9 |
+
# Convert the PIL Image to the format expected by the model
|
10 |
+
image = Image.open(image).convert("RGB")
|
11 |
+
|
12 |
+
# Use the pipeline to generate a caption
|
13 |
+
result = caption_pipeline(image)
|
14 |
+
caption = result[0]["generated_text"]
|
15 |
+
|
16 |
+
return caption
|
17 |
|
18 |
+
# Setup the Gradio interface
|
19 |
+
interface = gr.Interface(fn=generate_caption,
|
20 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
|
21 |
+
outputs=gr.outputs.Textbox(label="Generated Caption"))
|
22 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|