Jangai commited on
Commit
4b4c90a
·
verified ·
1 Parent(s): fa273bf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ import numpy as np
4
+ import torch as T
5
+ import transformers
6
+
7
+ # Assuming necessary model and tokenizer are already set up
8
+ PATH_LLAVA = '_ckpt/LLaVA-7B-v1'
9
+ tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
10
+ model = transformers.AutoModelForCausalLM.from_pretrained(PATH_LLAVA).cuda()
11
+
12
+ def remove_alter(s): # Simplify expressive instruction
13
+ if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip()
14
+ if '</s>' in s: s = s[:s.index('</s>')].strip()
15
+ if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
16
+ if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
17
+ s = '.'.join([s.strip() for s in s.split('.')[:2]])
18
+ if s[-1]!='.': s += '.'
19
+ return s.strip()
20
+
21
+ def load_image_and_generate_instruction(image_path):
22
+ # Load the image
23
+ img = Image.open(image_path)
24
+ img.show()
25
+
26
+ # Example: Generate a simple instruction based on the image
27
+ # This is a placeholder. You would replace this with your own method
28
+ # to analyze the image and generate a textual description or instruction.
29
+ instruction = "Describe what to do with this image."
30
+
31
+ # Simplify and generate expressive instruction
32
+ expressive_instruction = remove_alter(instruction)
33
+ print("Expressive Instruction:", expressive_instruction)
34
+
35
+ # Example usage
36
+ image_path = './path/to/your/image.jpg' # Update this path to your image
37
+ load_image_and_generate_instruction(image_path)