Describer / app.py
Jangai's picture
Update app.py
5342f17 verified
raw
history blame
692 Bytes
import gradio as gr
from transformers import pipeline
from PIL import Image
# Initialize the pipeline with the image captioning model
caption_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
def generate_caption(image):
# The image is received as a PIL Image, so no need for conversion
result = caption_pipeline(image)
caption = result[0]["generated_text"]
return caption
# Setup the Gradio interface
interface = gr.Interface(fn=generate_caption,
inputs=gr.components.Image(type="pil", label="Upload an Image"),
outputs=gr.components.Textbox(label="Generated Caption"))
interface.launch()