JanLilan's picture
UPDAED app.py with català speaker embedding
2a3194a
raw
history blame
5.05 kB
import os
import torch
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from speechbrain.pretrained import EncoderClassifier
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
model = SpeechT5ForTextToSpeech.from_pretrained(
"JanLilan/speecht5_finetuned_openslr-slr69-cat"
).to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
######################################################################################
################################## SPEAKER EMBEDDING #################################
######################################################################################
# we will try to translate with this voice embedding... Let's see what happen. else:
dataset = load_dataset("projecte-aina/openslr-slr69-ca-trimmed-denoised", split="train")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
# LOAD
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
# we must take one speaker embeding
checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
# function to embedd
def prepare_dataset(example):
audio = example["audio"]
example = processor(
text=example["transcription"],
audio_target=audio["array"],
sampling_rate=audio["sampling_rate"],
return_attention_mask=False,
)
# strip off the batch dimension
example["labels"] = example["labels"][0]
# use SpeechBrain to obtain x-vector
example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
return example
processed_example = prepare_dataset(dataset[0])
speaker_embeddings = torch.tensor(processed_example["speaker_embeddings"]).unsqueeze(0)
# etc.
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "catalan"})
return outputs["text"]
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Demo STST - Multilingual to Català Speech"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Català. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation to català, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech fine-tuned on [projecte-aina/openslr-slr69-ca-trimmed-denoised](https://huggingface.co/datasets/projecte-aina/openslr-slr69-ca-trimmed-denoised). This demo can be improve updating it with [projecte-aina/tts-ca-coqui-vits-multispeaker](https://huggingface.co/projecte-aina/tts-ca-coqui-vits-multispeaker) model:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()