# Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline import torch import gradio as gr from openpyxl import load_workbook from numpy import mean tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor") model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the fine-tuned model and tokenizer new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating') new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating') # Create a classification pipeline classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device) # Add label mapping for sentiment analysis label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'} def parse_xl(file_path): cells = [] workbook = load_workbook(filename=file_path) for sheet in workbook.worksheets: for row in sheet.iter_rows(): for cell in row: if cell.value != None: cells.append(cell.value) return cells def evaluate(file): reviews = parse_xl(file) ratings = [] text = "" for review in reviews: ratings.append(int(classifier(review)[0]['label'].split('_')[1])) text += review text += " " inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=50, max_length=1000) summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100) keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return round(mean(ratings), 2), summary, keywords iface = gr.Interface( fn=evaluate, inputs=gr.File(label="Reviews", file_types=[".xlsx", ".xlsm", ".xltx", ".xltm"]), outputs=[gr.Textbox(label="Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords")], title='Summarize Reviews', description="Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each reviews is in its own cell." ) iface.launch(share=True)