Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/app-checkpoint.py +2 -1
- app.py +2 -1
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -15,7 +15,8 @@ resnet_model = tf.keras.models.load_model('./flower_image_classification_ResNet5
|
|
15 |
def preprocess_image(image):
|
16 |
# Convert the PIL image to an array
|
17 |
image = np.array(image)
|
18 |
-
|
|
|
19 |
# Read and resize the image
|
20 |
image_resized = cv2.resize(image, (img_height, img_width))
|
21 |
|
|
|
15 |
def preprocess_image(image):
|
16 |
# Convert the PIL image to an array
|
17 |
image = np.array(image)
|
18 |
+
img_height = 180
|
19 |
+
img_width = 180
|
20 |
# Read and resize the image
|
21 |
image_resized = cv2.resize(image, (img_height, img_width))
|
22 |
|
app.py
CHANGED
@@ -15,7 +15,8 @@ resnet_model = tf.keras.models.load_model('./flower_image_classification_ResNet5
|
|
15 |
def preprocess_image(image):
|
16 |
# Convert the PIL image to an array
|
17 |
image = np.array(image)
|
18 |
-
|
|
|
19 |
# Read and resize the image
|
20 |
image_resized = cv2.resize(image, (img_height, img_width))
|
21 |
|
|
|
15 |
def preprocess_image(image):
|
16 |
# Convert the PIL image to an array
|
17 |
image = np.array(image)
|
18 |
+
img_height = 180
|
19 |
+
img_width = 180
|
20 |
# Read and resize the image
|
21 |
image_resized = cv2.resize(image, (img_height, img_width))
|
22 |
|