Upload folder using huggingface_hub
Browse files- README.md +3 -9
- app.py +165 -0
- flower_image_classification_ResNet50_v1.0.h5 +3 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji: 🌖
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.38.1
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: flower_image_classification_5_classes_v1.0
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.25.0
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "44c33030-a3e9-4f51-a5e8-a37de32e54e1",
|
7 |
+
"metadata": {
|
8 |
+
"scrolled": true
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stderr",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"name": "stdout",
|
20 |
+
"output_type": "stream",
|
21 |
+
"text": [
|
22 |
+
"Running on local URL: http://127.0.0.1:7869\n",
|
23 |
+
"\n",
|
24 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"data": {
|
29 |
+
"text/html": [
|
30 |
+
"<div><iframe src=\"http://127.0.0.1:7869/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
31 |
+
],
|
32 |
+
"text/plain": [
|
33 |
+
"<IPython.core.display.HTML object>"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"metadata": {},
|
37 |
+
"output_type": "display_data"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"data": {
|
41 |
+
"text/plain": []
|
42 |
+
},
|
43 |
+
"execution_count": 1,
|
44 |
+
"metadata": {},
|
45 |
+
"output_type": "execute_result"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"name": "stdout",
|
49 |
+
"output_type": "stream",
|
50 |
+
"text": [
|
51 |
+
"IMPORTANT: You are using gradio version 4.25.0, however version 4.29.0 is available, please upgrade.\n",
|
52 |
+
"--------\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"name": "stderr",
|
57 |
+
"output_type": "stream",
|
58 |
+
"text": [
|
59 |
+
"Traceback (most recent call last):\n",
|
60 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\gradio\\queueing.py\", line 522, in process_events\n",
|
61 |
+
" response = await route_utils.call_process_api(\n",
|
62 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\gradio\\route_utils.py\", line 260, in call_process_api\n",
|
63 |
+
" output = await app.get_blocks().process_api(\n",
|
64 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\gradio\\blocks.py\", line 1741, in process_api\n",
|
65 |
+
" result = await self.call_function(\n",
|
66 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\gradio\\blocks.py\", line 1296, in call_function\n",
|
67 |
+
" prediction = await anyio.to_thread.run_sync(\n",
|
68 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
|
69 |
+
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
70 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2134, in run_sync_in_worker_thread\n",
|
71 |
+
" return await future\n",
|
72 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 851, in run\n",
|
73 |
+
" result = context.run(func, *args)\n",
|
74 |
+
" File \"C:\\Users\\ASUSS\\anaconda3\\envs\\bootcampai\\lib\\site-packages\\gradio\\utils.py\", line 751, in wrapper\n",
|
75 |
+
" response = f(*args, **kwargs)\n",
|
76 |
+
" File \"C:\\Users\\ASUSS\\AppData\\Local\\Temp\\ipykernel_3748\\1829143819.py\", line 37, in predict\n",
|
77 |
+
" image_resized, output_class, confidence_level = preprocess_image(image)\n",
|
78 |
+
" File \"C:\\Users\\ASUSS\\AppData\\Local\\Temp\\ipykernel_3748\\1829143819.py\", line 19, in preprocess_image\n",
|
79 |
+
" image_resized = cv2.resize(image, (img_height, img_width))\n",
|
80 |
+
"NameError: name 'img_height' is not defined\n"
|
81 |
+
]
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"source": [
|
85 |
+
"import gradio as gr\n",
|
86 |
+
"import cv2\n",
|
87 |
+
"import numpy as np\n",
|
88 |
+
"import tensorflow as tf\n",
|
89 |
+
"from PIL import Image\n",
|
90 |
+
"\n",
|
91 |
+
"# Assuming you have already defined img_height, img_width, and class_names\n",
|
92 |
+
"# img_height, img_width = 180, 180\n",
|
93 |
+
"class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']\n",
|
94 |
+
"\n",
|
95 |
+
"# Load the fine-tuned model (from local)\n",
|
96 |
+
"resnet_model = tf.keras.models.load_model('./flower_image_classification_ResNet50_v1.0.h5')\n",
|
97 |
+
"\n",
|
98 |
+
"def preprocess_image(image):\n",
|
99 |
+
" # Convert the PIL image to an array\n",
|
100 |
+
" image = np.array(image)\n",
|
101 |
+
" \n",
|
102 |
+
" # Read and resize the image\n",
|
103 |
+
" image_resized = cv2.resize(image, (img_height, img_width))\n",
|
104 |
+
" \n",
|
105 |
+
" # Preprocess the image\n",
|
106 |
+
" image = np.expand_dims(image_resized, axis=0)\n",
|
107 |
+
" \n",
|
108 |
+
" # Predict with the model\n",
|
109 |
+
" pred = resnet_model.predict(image)\n",
|
110 |
+
" \n",
|
111 |
+
" # Get the predicted class label\n",
|
112 |
+
" predicted_class = np.argmax(pred)\n",
|
113 |
+
" output_class = class_names[predicted_class]\n",
|
114 |
+
" \n",
|
115 |
+
" # Get the confidence level (probability)\n",
|
116 |
+
" confidence_level = pred[0][predicted_class]\n",
|
117 |
+
" \n",
|
118 |
+
" return image_resized, output_class, confidence_level\n",
|
119 |
+
"\n",
|
120 |
+
"def predict(image):\n",
|
121 |
+
" image_resized, output_class, confidence_level = preprocess_image(image)\n",
|
122 |
+
" return Image.fromarray(image_resized), output_class, str(confidence_level)\n",
|
123 |
+
"\n",
|
124 |
+
"# Define the Gradio interface\n",
|
125 |
+
"inputs = gr.Image(type=\"pil\", label=\"Upload Image\")\n",
|
126 |
+
"outputs = [\n",
|
127 |
+
" gr.Image(type=\"pil\", label=\"Resized Image\"),\n",
|
128 |
+
" gr.Textbox(label=\"Predicted Class\"),\n",
|
129 |
+
" gr.Textbox(label=\"Confidence Level\")\n",
|
130 |
+
"]\n",
|
131 |
+
"\n",
|
132 |
+
"# Create the Gradio Interface\n",
|
133 |
+
"gr.Interface(\n",
|
134 |
+
" fn=predict,\n",
|
135 |
+
" inputs=inputs,\n",
|
136 |
+
" outputs=outputs,\n",
|
137 |
+
" title=\"Flower Classification with ResNet50\",\n",
|
138 |
+
" description=\"Upload an image of a flower to classify it into one of the five categories.\",\n",
|
139 |
+
" live=True\n",
|
140 |
+
").launch()\n"
|
141 |
+
]
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"metadata": {
|
145 |
+
"kernelspec": {
|
146 |
+
"display_name": "Python 3 (ipykernel)",
|
147 |
+
"language": "python",
|
148 |
+
"name": "python3"
|
149 |
+
},
|
150 |
+
"language_info": {
|
151 |
+
"codemirror_mode": {
|
152 |
+
"name": "ipython",
|
153 |
+
"version": 3
|
154 |
+
},
|
155 |
+
"file_extension": ".py",
|
156 |
+
"mimetype": "text/x-python",
|
157 |
+
"name": "python",
|
158 |
+
"nbconvert_exporter": "python",
|
159 |
+
"pygments_lexer": "ipython3",
|
160 |
+
"version": "3.10.12"
|
161 |
+
}
|
162 |
+
},
|
163 |
+
"nbformat": 4,
|
164 |
+
"nbformat_minor": 5
|
165 |
+
}
|
flower_image_classification_ResNet50_v1.0.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c56d5c7725041796c23fc419053821b6b7e61ac21c7480b6fc28bbb95f8e92f
|
3 |
+
size 547757072
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python 3.10.12
|
2 |
+
gradio==4.25.0
|
3 |
+
opencv-python==4.10.0
|
4 |
+
numpy==1.26.4
|
5 |
+
tensorflow==2.16.1
|
6 |
+
pillow==10.3.0
|