File size: 1,702 Bytes
31b46d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
import transformers
import torch

# Define sentiment analysis models
models = {
    "DistilBERT": transformers.pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english"),
    "BERT": transformers.pipeline("sentiment-analysis", model="bert-base-uncased-finetuned-sst-2-english"),
    "RoBERTa": transformers.pipeline("sentiment-analysis", model="roberta-base-openai-detector"),
}

# Define function to analyze sentiment using selected model
def analyze_sentiment(text, model_name):
    model = models[model_name]
    result = model(text)[0]
    return result['label'], result['score']

# Define Streamlit app
def app():
    st.title("Sentiment Analysis App")

    # User input
    text = st.text_area("Enter text to analyze", max_chars=1024)

    # Sentiment analysis
    if st.button("Analyze"):
        st.write("Analyzing sentiment...")
        with st.spinner("Wait for it..."):
            results = []
            for model_name in models:
                label, score = analyze_sentiment(text, model_name)
                results.append((model_name, label, score))
        st.success("Sentiment analysis complete!")
        st.write("Results:")
        for model_name, label, score in results:
            st.write(f"- {model_name}: {label} ({score:.2f})")

    # Advanced features
    if st.beta_expander("Advanced Options", expanded=False):
        model_name = st.selectbox("Select model", list(models.keys()))
        if st.button("Test model"):
            label, score = analyze_sentiment("This is a test.", model_name)
            st.write(f"Test result: {label} ({score:.2f})")

# Run Streamlit app
if __name__ == "__main__":
    app()