Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
-
|
| 4 |
import torch
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
import gradio as gr
|
| 7 |
from threading import Thread
|
| 8 |
|
| 9 |
-
MODEL_LIST = ["
|
| 10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
| 11 |
|
| 12 |
-
TITLE = "<h1><center>
|
| 13 |
|
| 14 |
PLACEHOLDER = """
|
| 15 |
<center>
|
|
@@ -30,21 +31,12 @@ h3 {
|
|
| 30 |
}
|
| 31 |
"""
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 35 |
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device)
|
| 40 |
-
|
| 41 |
-
tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1])
|
| 42 |
-
model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device)
|
| 43 |
-
|
| 44 |
-
tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2])
|
| 45 |
-
model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device)
|
| 46 |
-
|
| 47 |
-
#@spaces.GPU()
|
| 48 |
def stream_chat(
|
| 49 |
message: str,
|
| 50 |
history: list,
|
|
@@ -53,7 +45,6 @@ def stream_chat(
|
|
| 53 |
top_p: float = 1.0,
|
| 54 |
top_k: int = 20,
|
| 55 |
penalty: float = 1.2,
|
| 56 |
-
choice: str = "135M"
|
| 57 |
):
|
| 58 |
print(f'message: {message}')
|
| 59 |
print(f'history: {history}')
|
|
@@ -67,16 +58,6 @@ def stream_chat(
|
|
| 67 |
|
| 68 |
conversation.append({"role": "user", "content": message})
|
| 69 |
|
| 70 |
-
if choice == "1.7B":
|
| 71 |
-
tokenizer = tokenizer0
|
| 72 |
-
model = model0
|
| 73 |
-
elif choice == "135M":
|
| 74 |
-
model = model1
|
| 75 |
-
tokenizer = tokenizer1
|
| 76 |
-
else:
|
| 77 |
-
model = model2
|
| 78 |
-
tokenizer = tokenizer2
|
| 79 |
-
|
| 80 |
input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
|
| 81 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 82 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
@@ -154,12 +135,6 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
| 154 |
label="Repetition penalty",
|
| 155 |
render=False,
|
| 156 |
),
|
| 157 |
-
gr.Radio(
|
| 158 |
-
["135M", "360M", "1.7B"],
|
| 159 |
-
value="135M",
|
| 160 |
-
label="Load Model",
|
| 161 |
-
render=False,
|
| 162 |
-
),
|
| 163 |
],
|
| 164 |
examples=[
|
| 165 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
+
import spaces
|
| 4 |
import torch
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
import gradio as gr
|
| 7 |
from threading import Thread
|
| 8 |
|
| 9 |
+
MODEL_LIST = ["mistralai/Mistral-Nemo-Instruct-2407"]
|
| 10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 11 |
+
MODEL = os.environ.get("MODEL_ID")
|
| 12 |
|
| 13 |
+
TITLE = "<h1><center>Mistral-Nemo</center></h1>"
|
| 14 |
|
| 15 |
PLACEHOLDER = """
|
| 16 |
<center>
|
|
|
|
| 31 |
}
|
| 32 |
"""
|
| 33 |
|
| 34 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
|
|
|
| 35 |
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 37 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL).to(device)
|
| 38 |
|
| 39 |
+
@spaces.GPU()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def stream_chat(
|
| 41 |
message: str,
|
| 42 |
history: list,
|
|
|
|
| 45 |
top_p: float = 1.0,
|
| 46 |
top_k: int = 20,
|
| 47 |
penalty: float = 1.2,
|
|
|
|
| 48 |
):
|
| 49 |
print(f'message: {message}')
|
| 50 |
print(f'history: {history}')
|
|
|
|
| 58 |
|
| 59 |
conversation.append({"role": "user", "content": message})
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
|
| 62 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 63 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 135 |
label="Repetition penalty",
|
| 136 |
render=False,
|
| 137 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
],
|
| 139 |
examples=[
|
| 140 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|