Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,49 +2,27 @@ import os
|
|
| 2 |
import threading
|
| 3 |
import time
|
| 4 |
import subprocess
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
if not os.path.exists(OLLAMA):
|
| 9 |
-
subprocess.run("curl -L https://ollama.com/download/ollama-linux-amd64 -o ~/ollama", shell=True)
|
| 10 |
-
os.chmod(OLLAMA, 0o755)
|
| 11 |
-
|
| 12 |
-
def ollama_service_thread():
|
| 13 |
-
subprocess.run("~/ollama serve", shell=True)
|
| 14 |
-
|
| 15 |
-
OLLAMA_SERVICE_THREAD = threading.Thread(target=ollama_service_thread)
|
| 16 |
-
OLLAMA_SERVICE_THREAD.start()
|
| 17 |
-
|
| 18 |
-
print("Giving ollama serve a moment")
|
| 19 |
-
time.sleep(10)
|
| 20 |
-
|
| 21 |
-
# Modify the model to what you want
|
| 22 |
-
model = "gemma2"
|
| 23 |
-
|
| 24 |
-
subprocess.run(f"~/ollama pull {model}", shell=True)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
import copy
|
| 28 |
import gradio as gr
|
| 29 |
-
|
| 30 |
-
client = Client(host='http://localhost:11434', timeout=120)
|
| 31 |
|
| 32 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 33 |
-
MODEL_ID = os.environ.get("MODEL_ID",
|
| 34 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 35 |
|
| 36 |
-
TITLE = "<h1><center>
|
| 37 |
|
| 38 |
DESCRIPTION = f"""
|
| 39 |
<h3>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
|
|
|
|
|
|
| 40 |
<center>
|
| 41 |
-
<p>Feel free to test models
|
| 42 |
-
<br>
|
| 43 |
-
Easy to modify and running models you want.
|
| 44 |
-
</p>
|
| 45 |
</center>
|
| 46 |
"""
|
| 47 |
|
|
|
|
| 48 |
CSS = """
|
| 49 |
.duplicate-button {
|
| 50 |
margin: auto !important;
|
|
@@ -57,6 +35,13 @@ h3 {
|
|
| 57 |
}
|
| 58 |
"""
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
| 62 |
|
|
@@ -70,28 +55,29 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
| 70 |
|
| 71 |
print(f"Conversation is -\n{conversation}")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
},
|
| 85 |
)
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
buffer = ""
|
| 88 |
-
for
|
| 89 |
-
buffer +=
|
| 90 |
yield buffer
|
| 91 |
|
| 92 |
|
| 93 |
-
|
| 94 |
-
chatbot = gr.Chatbot(height=600)
|
| 95 |
|
| 96 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
| 97 |
gr.HTML(TITLE)
|
|
|
|
| 2 |
import threading
|
| 3 |
import time
|
| 4 |
import subprocess
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
+
|
|
|
|
| 9 |
|
| 10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 11 |
+
MODEL_ID = os.environ.get("MODEL_ID", None)
|
| 12 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 13 |
|
| 14 |
+
TITLE = "<h1><center>internlm2.5-7b-chat</center></h1>"
|
| 15 |
|
| 16 |
DESCRIPTION = f"""
|
| 17 |
<h3>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
| 18 |
+
"""
|
| 19 |
+
PLACEHOLDER = """
|
| 20 |
<center>
|
| 21 |
+
<p>Feel free to test models <b>without</b> any logs.</p>
|
|
|
|
|
|
|
|
|
|
| 22 |
</center>
|
| 23 |
"""
|
| 24 |
|
| 25 |
+
|
| 26 |
CSS = """
|
| 27 |
.duplicate-button {
|
| 28 |
margin: auto !important;
|
|
|
|
| 35 |
}
|
| 36 |
"""
|
| 37 |
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
MODEL_ID,
|
| 40 |
+
torch_dtype=torch.float16,
|
| 41 |
+
trust_remote_code=True).cuda()
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 43 |
+
|
| 44 |
+
model = model.eval()
|
| 45 |
|
| 46 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
| 47 |
|
|
|
|
| 55 |
|
| 56 |
print(f"Conversation is -\n{conversation}")
|
| 57 |
|
| 58 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 59 |
+
|
| 60 |
+
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
| 61 |
+
|
| 62 |
+
generate_kwargs = dict(
|
| 63 |
+
input_ids=input_ids,
|
| 64 |
+
streamer=streamer,
|
| 65 |
+
max_new_tokens=max_new_tokens,
|
| 66 |
+
do_sample=True,
|
| 67 |
+
temperature=temperature,
|
| 68 |
+
eos_token_id = [2,92542],
|
|
|
|
| 69 |
)
|
| 70 |
+
|
| 71 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 72 |
+
thread.start()
|
| 73 |
|
| 74 |
buffer = ""
|
| 75 |
+
for new_text in streamer:
|
| 76 |
+
buffer += new_text
|
| 77 |
yield buffer
|
| 78 |
|
| 79 |
|
| 80 |
+
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
|
|
|
| 81 |
|
| 82 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
| 83 |
gr.HTML(TITLE)
|