File size: 6,810 Bytes
879376e 09ef5ed 879376e 13c9775 879376e 13c9775 879376e af93fd7 879376e 9df996d 109bbdb 879376e 918e666 879376e 918e666 879376e 918e666 879376e 918e666 879376e 848b71c 879376e 9931dd9 879376e ae9fb56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import numpy as np
from huggingface_hub import hf_hub_url, cached_download
import PIL
import onnx
import onnxruntime
config_file_url = hf_hub_url("Jacopo/ToonClip", filename="modelhd.onnx")
model_file = cached_download(config_file_url)
onnx_model = onnx.load(model_file)
onnx.checker.check_model(onnx_model)
opts = onnxruntime.SessionOptions()
opts.intra_op_num_threads = 16
ort_session = onnxruntime.InferenceSession(model_file, sess_options=opts)
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
def normalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)):
# x = (x - mean) / std
x = np.asarray(x, dtype=np.float32)
if len(x.shape) == 4:
for dim in range(3):
x[:, dim, :, :] = (x[:, dim, :, :] - mean[dim]) / std[dim]
if len(x.shape) == 3:
for dim in range(3):
x[dim, :, :] = (x[dim, :, :] - mean[dim]) / std[dim]
return x
def denormalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)):
# x = (x * std) + mean
x = np.asarray(x, dtype=np.float32)
if len(x.shape) == 4:
for dim in range(3):
x[:, dim, :, :] = (x[:, dim, :, :] * std[dim]) + mean[dim]
if len(x.shape) == 3:
for dim in range(3):
x[dim, :, :] = (x[dim, :, :] * std[dim]) + mean[dim]
return x
def nogan(input_img):
i = np.asarray(input_img)
i = i.astype("float32")
i = np.transpose(i, (2, 0, 1))
i = np.expand_dims(i, 0)
i = i / 255.0
#i = normalize(i, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
ort_outs = ort_session.run([output_name], {input_name: i})
output = ort_outs
output = output[0][0]
#output = denormalize(output, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
output = output * 255.0
output = output.astype('uint8')
output = np.transpose(output, (1, 2, 0))
output_image = PIL.Image.fromarray(output, 'RGB')
return output_image
title = "ToonClip Comics Hero Demo"
description = """
Gradio demo for ToonClip, a UNet++ network with MobileNet v3 backbone optimized for mobile frameworks and trained with VGG Perceptual Feature Loss using PyTorch Lighting.
To use it, simply upload an image with a face or choose an example from the list below.
"""
article = """
<style>
.boxes{
width:50%;
float:left;
}
#mainDiv{
width:50%;
margin:auto;
}
img{
max-width:100%;
}
</style>
<p style='text-align: center'>The \"ToonClip\" model was trained by <a href='https://twitter.com/JacopoMangia' target='_blank'>Jacopo Mangiavacchi</a> and available at <a href='https://github.com/jacopomangiavacchi/ComicsHeroMobileUNet' target='_blank'>Github Repo ComicsHeroMobileUNet</a></p>
<p style='text-align: center'>The \"Comics Hero dataset\" used to train this model was produced by <a href='https://linktr.ee/Norod78' target='_blank'>Doron Adler</a> and available at <a href='https://github.com/Norod/U-2-Net-StyleTransfer' target='_blank'>Github Repo Comics hero U2Net</a></p>
<p style='text-align: center'>The \"ToonClip\" iOS mobile app using a CoreML version of this model is available on Apple App Store at <a href='https://apps.apple.com/us/app/toonclip/id1536285338' target='_blank'>ToonClip</a></p>
<p style='text-align: center'>Blog post on <a href='https://medium.com/@JMangia/optimize-a-face-to-cartoon-style-transfer-model-trained-quickly-on-small-style-dataset-and-50594126e792' target='_blank'>Medium</a></p>
<br>
<p style='text-align: center'>Example images from untrained FFHQ validation set: </p>
<p>
<div id='mainDiv'>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i01.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o01.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i02.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o02.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i03.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o03.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i04.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o04.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i05.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o05.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i06.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o06.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i07.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o07.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i08.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o08.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i09.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o09.png' alt='Output01'/>
</div>
<div id='divOne' class='boxes'>
<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i10.jpeg' alt='Example01'/>
</div>
<div id='divTwo' class='boxes'>
<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o10.png' alt='Output01'/>
</div>
</div>
</p>
"""
examples=[['i01.jpeg'], ['i02.jpeg'], ['i03.jpeg'], ['i04.jpeg'], ['i05.jpeg'], ['i06.jpeg'], ['i07.jpeg'], ['i08.jpeg'], ['i09.jpeg'], ['i10.jpeg']]
iface = gr.Interface(
nogan,
gr.inputs.Image(type="pil", shape=(1024, 1024)),
gr.outputs.Image(type="pil"),
title=title,
description=description,
article=article,
examples=examples)
iface.launch(share=True)
|