File size: 1,369 Bytes
e4fa8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import yaml
from audiosr import download_checkpoint, default_audioldm_config, LatentDiffusion


def load_audiosr(ckpt_path=None, config=None, device=None, model_name="basic"):
    if device is None or device == "auto":
        if torch.cuda.is_available():
            device = torch.device("cuda:0")
        elif torch.backends.mps.is_available():
            device = torch.device("mps")
        else:
            device = torch.device("cpu")

    print("Loading AudioSR: %s" % model_name)
    print("Loading model on %s" % device)

    ckpt_path = download_checkpoint(model_name)

    if config is not None:
        assert type(config) is str
        config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
    else:
        config = default_audioldm_config(model_name)

    # # Use text as condition instead of using waveform during training
    config["model"]["params"]["device"] = device
    # config["model"]["params"]["cond_stage_key"] = "text"

    # No normalization here
    latent_diffusion = LatentDiffusion(**config["model"]["params"])

    resume_from_checkpoint = ckpt_path

    checkpoint = torch.load(resume_from_checkpoint, map_location="cpu")

    latent_diffusion.load_state_dict(checkpoint["state_dict"], strict=True)

    latent_diffusion.eval()
    latent_diffusion = latent_diffusion.to(device)

    return latent_diffusion