import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from librosa.util import pad_center from scipy.signal import get_window class TorchSTFT(nn.Module): def __init__( self, filter_length=1024, hop_length=512, win_length=None, window="hann" ): """ This module implements an STFT using PyTorch's stft function. Keyword Arguments: filter_length {int} -- Length of filters used (default: {1024}) hop_length {int} -- Hop length of STFT (default: {512}) win_length {[type]} -- Length of the window function applied to each frame (if not specified, it equals the filter length). (default: {None}) window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris) (default: {'hann'}) """ super(TorchSTFT, self).__init__() self.n_fft_new = filter_length self.hop_length_new = hop_length self.win_length_new = win_length if win_length else filter_length self.center = True hann_window_0 = torch.hann_window(self.win_length_new) self.register_buffer("hann_window_0", hann_window_0, persistent=False) def forward(self, input_data): fft = torch.stft( input_data, n_fft=self.n_fft_new, hop_length=self.hop_length_new, win_length=self.win_length_new, window=self.hann_window_0, center=self.center, return_complex=True, ) magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2)) return magnitude class STFT(nn.Module): def __init__( self, filter_length=1024, hop_length=512, win_length=None, window="hann" ): """ This module implements an STFT using 1D convolution and 1D transpose convolutions. This is a bit tricky so there are some cases that probably won't work as working out the same sizes before and after in all overlap add setups is tough. Right now, this code should work with hop lengths that are half the filter length (50% overlap between frames). Keyword Arguments: filter_length {int} -- Length of filters used (default: {1024}) hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512}) win_length {[type]} -- Length of the window function applied to each frame (if not specified, it equals the filter length). (default: {None}) window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris) (default: {'hann'}) """ super(STFT, self).__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length if win_length else filter_length self.window = window self.forward_transform = None self.pad_amount = int(self.filter_length / 2) fourier_basis = np.fft.fft(np.eye(self.filter_length)) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack( [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] ) forward_basis = torch.FloatTensor(fourier_basis) inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis)) assert filter_length >= self.win_length # get window and zero center pad it to filter_length fft_window = get_window(window, self.win_length, fftbins=True) fft_window = pad_center(fft_window, size=filter_length) fft_window = torch.from_numpy(fft_window).float() # window the bases forward_basis *= fft_window inverse_basis = (inverse_basis.T * fft_window).T self.register_buffer("forward_basis", forward_basis.float(), persistent=False) self.register_buffer("inverse_basis", inverse_basis.float(), persistent=False) self.register_buffer("fft_window", fft_window.float(), persistent=False) def forward(self, input_data): """Take input data (audio) to STFT domain using convolution.""" input_data = F.pad( input_data, (self.pad_amount, self.pad_amount), mode="reflect", ) # Reshape input for convolution input_data = input_data.unsqueeze(1) # Create windowed basis as convolution weights forward_transform = F.conv1d( input_data, self.forward_basis.unsqueeze(1), stride=self.hop_length, groups=1, ) cutoff = int((self.filter_length / 2) + 1) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) return magnitude