Spaces:
Paused
Paused
import os | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import librosa | |
from .stft import STFT, TorchSTFT | |
USING_TORCH_STFT = os.getenv("USING_TORCH_STFT") is not None | |
class MelSpectrogram(nn.Module): | |
def __init__( | |
self, | |
n_mel_channels: int, | |
sampling_rate: int, | |
win_length: int, | |
hop_length: int, | |
n_fft: int = None, | |
mel_fmin: int = 0, | |
mel_fmax: int = None, | |
clamp: float = 1e-5, | |
): | |
super().__init__() | |
n_fft = win_length if n_fft is None else n_fft | |
mel_basis = librosa.filters.mel( | |
sr=sampling_rate, | |
n_fft=n_fft, | |
n_mels=n_mel_channels, | |
fmin=mel_fmin, | |
fmax=mel_fmax, | |
htk=True, | |
) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer("mel_basis", mel_basis, persistent=False) | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.sampling_rate = sampling_rate | |
self.n_mel_channels = n_mel_channels | |
self.clamp = clamp | |
self.keyshift = 0 | |
self.speed = 1 | |
self.factor = 2 ** (self.keyshift / 12) | |
self.n_fft_new = int(np.round(self.n_fft * self.factor)) | |
self.win_length_new = int(np.round(self.win_length * self.factor)) | |
self.hop_length_new = int(np.round(self.hop_length * self.speed)) | |
if USING_TORCH_STFT: | |
self.stft = TorchSTFT( | |
filter_length=self.n_fft_new, | |
hop_length=self.hop_length_new, | |
win_length=self.win_length_new, | |
window="hann", | |
) | |
else: | |
self.stft = STFT( | |
filter_length=self.n_fft_new, | |
hop_length=self.hop_length_new, | |
win_length=self.win_length_new, | |
window="hann", | |
) | |
def forward(self, audio: torch.Tensor): | |
magnitude = self.stft(audio) | |
mel_output = torch.matmul(self.mel_basis, magnitude) | |
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp)) | |
return log_mel_spec | |