Spaces:
Paused
Paused
from typing import List, Tuple | |
import torch | |
from torch import nn | |
from .constants import * | |
class ConvBlockRes(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, momentum=0.01): | |
super().__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
) | |
# self.shortcut:Optional[nn.Module] = None | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) | |
def forward(self, x: torch.Tensor): | |
if not hasattr(self, "shortcut"): | |
return self.conv(x) + x | |
else: | |
return self.conv(x) + self.shortcut(x) | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
in_size: int, | |
n_encoders: int, | |
kernel_size: int, | |
n_blocks: int, | |
out_channels=16, | |
momentum=0.01, | |
): | |
super().__init__() | |
self.n_encoders = n_encoders | |
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) | |
self.layers = nn.ModuleList() | |
self.latent_channels = [] | |
for i in range(self.n_encoders): | |
self.layers.append( | |
ResEncoderBlock( | |
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum | |
) | |
) | |
self.latent_channels.append([out_channels, in_size]) | |
in_channels = out_channels | |
out_channels *= 2 | |
in_size //= 2 | |
self.out_size = in_size | |
self.out_channel = out_channels | |
def forward(self, x: torch.Tensor): | |
concat_tensors: List[torch.Tensor] = [] | |
x = self.bn(x) | |
for i, layer in enumerate(self.layers): | |
t, x = layer(x) | |
concat_tensors.append(t) | |
return x, concat_tensors | |
class ResEncoderBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int | None = None, | |
n_blocks=1, | |
momentum=0.01, | |
): | |
super().__init__() | |
self.n_blocks = n_blocks | |
self.conv = nn.ModuleList() | |
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) | |
for _ in range(n_blocks - 1): | |
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
self.kernel_size = kernel_size | |
if kernel_size is not None: | |
self.pool = nn.AvgPool2d(kernel_size=kernel_size) | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
for conv in self.conv: | |
x = conv(x) | |
if self.kernel_size is None: | |
return x, x | |
return x, self.pool(x) | |
class Intermediate(nn.Module): # | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
n_inters: int, | |
n_blocks: int, | |
momentum=0.01, | |
): | |
super().__init__() | |
self.n_inters = n_inters | |
self.layers = nn.ModuleList() | |
self.layers.append( | |
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) | |
) | |
for _ in range(self.n_inters - 1): | |
self.layers.append( | |
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for layer in self.layers: | |
x, _ = layer(x) | |
return x | |
class ResDecoderBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
stride: int, | |
n_blocks=1, | |
momentum=0.01, | |
): | |
super().__init__() | |
out_padding = (0, 1) if stride == (1, 2) else (1, 1) | |
self.n_blocks = n_blocks | |
self.conv1 = nn.Sequential( | |
nn.ConvTranspose2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=stride, | |
padding=(1, 1), | |
output_padding=out_padding, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
) | |
self.conv2 = nn.ModuleList() | |
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) | |
for _ in range(n_blocks - 1): | |
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
def forward(self, x: torch.Tensor, concat_tensor: torch.Tensor) -> torch.Tensor: | |
x = self.conv1(x) | |
x = torch.cat((x, concat_tensor), dim=1) | |
for conv2 in self.conv2: | |
x = conv2(x) | |
return x | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
n_decoders: int, | |
stride: int, | |
n_blocks: int, | |
momentum=0.01, | |
): | |
super().__init__() | |
self.layers = nn.ModuleList() | |
self.n_decoders = n_decoders | |
for _ in range(self.n_decoders): | |
out_channels = in_channels // 2 | |
self.layers.append( | |
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) | |
) | |
in_channels = out_channels | |
def forward( | |
self, x: torch.Tensor, concat_tensors: List[torch.Tensor] | |
) -> torch.Tensor: | |
for i, layer in enumerate(self.layers): | |
x = layer(x, concat_tensors[-1 - i]) | |
return x | |
class DeepUnet(nn.Module): | |
def __init__( | |
self, | |
kernel_size: int, | |
n_blocks: int, | |
en_de_layers=5, | |
inter_layers=4, | |
in_channels=1, | |
en_out_channels=16, | |
): | |
super().__init__() | |
self.encoder = Encoder( | |
in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels | |
) | |
self.intermediate = Intermediate( | |
self.encoder.out_channel // 2, | |
self.encoder.out_channel, | |
inter_layers, | |
n_blocks, | |
) | |
self.decoder = Decoder( | |
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x, concat_tensors = self.encoder(x) | |
x = self.intermediate(x) | |
x = self.decoder(x, concat_tensors) | |
return x | |