Spaces:
Paused
Paused
File size: 24,667 Bytes
2d9b22b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import os
from glob import glob
from logging import getLogger
from typing import Literal, Optional, Tuple
from pathlib import Path
from threading import Thread
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from accelerate import Accelerator
from datasets import Dataset
from .pretrained import pretrained_checkpoints
from .constants import *
from torch.utils.tensorboard import SummaryWriter
import time
from tqdm.auto import tqdm
from huggingface_hub import HfApi, upload_folder
from .synthesizer import commons
from .synthesizer.models import (
SynthesizerTrnMs768NSFsid,
MultiPeriodDiscriminator,
)
from .utils.losses import (
discriminator_loss,
feature_loss,
generator_loss,
kl_loss,
)
from .utils.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from .utils.data_utils import TextAudioCollateMultiNSFsid
logger = getLogger(__name__)
class TrainingCheckpoint:
def __init__(
self,
epoch: int,
G: SynthesizerTrnMs768NSFsid,
D: MultiPeriodDiscriminator,
optimizer_G: torch.optim.AdamW,
optimizer_D: torch.optim.AdamW,
scheduler_G: torch.optim.lr_scheduler.ExponentialLR,
scheduler_D: torch.optim.lr_scheduler.ExponentialLR,
loss_gen: float,
loss_fm: float,
loss_mel: float,
loss_kl: float,
loss_gen_all: float,
loss_disc: float,
):
self.epoch = epoch
self.G = G
self.D = D
self.optimizer_G = optimizer_G
self.optimizer_D = optimizer_D
self.scheduler_G = scheduler_G
self.scheduler_D = scheduler_D
self.loss_gen = loss_gen
self.loss_fm = loss_fm
self.loss_mel = loss_mel
self.loss_kl = loss_kl
self.loss_gen_all = loss_gen_all
self.loss_disc = loss_disc
def save(
self,
exp_dir="./",
g_checkpoint: str | None = None,
d_checkpoint: str | None = None,
):
g_path = g_checkpoint if g_checkpoint is not None else f"G_latest.pth"
d_path = d_checkpoint if d_checkpoint is not None else f"D_latest.pth"
torch.save(
{
"epoch": self.epoch,
"model": self.G.state_dict(),
"optimizer": self.optimizer_G.state_dict(),
"scheduler": self.scheduler_G.state_dict(),
"loss_gen": self.loss_gen,
"loss_fm": self.loss_fm,
"loss_mel": self.loss_mel,
"loss_kl": self.loss_kl,
"loss_gen_all": self.loss_gen_all,
"loss_disc": self.loss_disc,
},
os.path.join(exp_dir, g_path),
)
torch.save(
{
"epoch": self.epoch,
"model": self.D.state_dict(),
"optimizer": self.optimizer_D.state_dict(),
"scheduler": self.scheduler_D.state_dict(),
},
os.path.join(exp_dir, d_path),
)
def latest_checkpoint_file(files: list[str]) -> str:
try:
return max(files, key=lambda x: int(Path(x).stem.split("_")[1]))
except:
return max(files, key=os.path.getctime)
class RVCTrainer:
def __init__(
self,
exp_dir: str,
dataset_train: Dataset,
dataset_test: Optional[Dataset] = None,
sr: int = SR_48K,
):
self.exp_dir = exp_dir
self.dataset_train = dataset_train
self.dataset_test = dataset_test
self.sr = sr
self.writer = SummaryWriter(
os.path.join(exp_dir, "logs", time.strftime("%Y%m%d-%H%M%S"))
)
def latest_checkpoint(self, fallback_to_pretrained: bool = True):
files_g = glob(os.path.join(self.exp_dir, "G_*.pth"))
if not files_g:
return pretrained_checkpoints() if fallback_to_pretrained else None
latest_g = latest_checkpoint_file(files_g)
files_d = glob(os.path.join(self.exp_dir, "D_*.pth"))
if not files_d:
return pretrained_checkpoints() if fallback_to_pretrained else None
latest_d = latest_checkpoint_file(files_d)
return latest_g, latest_d
def setup_models(
self,
resume_from: Tuple[str, str] | None = None,
accelerator: Accelerator | None = None,
lr=1e-4,
lr_decay=0.999875,
betas: Tuple[float, float] = (0.8, 0.99),
eps=1e-9,
use_spectral_norm=False,
segment_size=17280,
filter_length=N_FFT,
hop_length=HOP_LENGTH,
inter_channels=192,
hidden_channels=192,
filter_channels=768,
n_heads=2,
n_layers=6,
kernel_size=3,
p_dropout=0.0,
resblock: Literal["1", "2"] = "1",
resblock_kernel_sizes: list[int] = [3, 7, 11],
resblock_dilation_sizes: list[list[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_initial_channel=512,
upsample_rates: list[int] = [12, 10, 2, 2],
upsample_kernel_sizes: list[int] = [24, 20, 4, 4],
spk_embed_dim=109,
gin_channels=256,
) -> Tuple[
SynthesizerTrnMs768NSFsid,
MultiPeriodDiscriminator,
torch.optim.AdamW,
torch.optim.AdamW,
torch.optim.lr_scheduler.ExponentialLR,
torch.optim.lr_scheduler.ExponentialLR,
int,
]:
if accelerator is None:
accelerator = Accelerator()
G = SynthesizerTrnMs768NSFsid(
spec_channels=filter_length // 2 + 1,
segment_size=segment_size // hop_length,
inter_channels=inter_channels,
hidden_channels=hidden_channels,
filter_channels=filter_channels,
n_heads=n_heads,
n_layers=n_layers,
kernel_size=kernel_size,
p_dropout=p_dropout,
resblock=resblock,
resblock_kernel_sizes=resblock_kernel_sizes,
resblock_dilation_sizes=resblock_dilation_sizes,
upsample_initial_channel=upsample_initial_channel,
upsample_rates=upsample_rates,
upsample_kernel_sizes=upsample_kernel_sizes,
spk_embed_dim=spk_embed_dim,
gin_channels=gin_channels,
sr=self.sr,
).to(accelerator.device)
D = MultiPeriodDiscriminator(use_spectral_norm=use_spectral_norm).to(
accelerator.device
)
optimizer_G = torch.optim.AdamW(
G.parameters(),
lr,
betas=betas,
eps=eps,
)
optimizer_D = torch.optim.AdamW(
D.parameters(),
lr,
betas=betas,
eps=eps,
)
if resume_from is not None:
g_checkpoint, d_checkpoint = resume_from
logger.info(f"Resuming from {g_checkpoint} and {d_checkpoint}")
G_checkpoint = torch.load(
g_checkpoint, map_location=accelerator.device, weights_only=True
)
D_checkpoint = torch.load(
d_checkpoint, map_location=accelerator.device, weights_only=True
)
if "epoch" in G_checkpoint:
finished_epoch = int(G_checkpoint["epoch"])
try:
finished_epoch = int(Path(g_checkpoint).stem.split("_")[1])
except:
finished_epoch = 0
scheduler_G = torch.optim.lr_scheduler.ExponentialLR(
optimizer_G, gamma=lr_decay, last_epoch=finished_epoch - 1
)
scheduler_D = torch.optim.lr_scheduler.ExponentialLR(
optimizer_D, gamma=lr_decay, last_epoch=finished_epoch - 1
)
G.load_state_dict(G_checkpoint["model"])
if "optimizer" in G_checkpoint:
optimizer_G.load_state_dict(G_checkpoint["optimizer"])
if "scheduler" in G_checkpoint:
scheduler_G.load_state_dict(G_checkpoint["scheduler"])
D.load_state_dict(D_checkpoint["model"])
if "optimizer" in D_checkpoint:
optimizer_D.load_state_dict(D_checkpoint["optimizer"])
if "scheduler" in D_checkpoint:
scheduler_D.load_state_dict(D_checkpoint["scheduler"])
else:
finished_epoch = 0
scheduler_G = torch.optim.lr_scheduler.ExponentialLR(
optimizer_G, gamma=lr_decay, last_epoch=-1
)
scheduler_D = torch.optim.lr_scheduler.ExponentialLR(
optimizer_D, gamma=lr_decay, last_epoch=-1
)
G, D, optimizer_G, optimizer_D = accelerator.prepare(
G, D, optimizer_G, optimizer_D
)
return G, D, optimizer_G, optimizer_D, scheduler_G, scheduler_D, finished_epoch
def setup_dataloader(
self,
dataset: Dataset,
batch_size=1,
shuffle=True,
accelerator: Accelerator | None = None,
):
if accelerator is None:
accelerator = Accelerator()
dataset = dataset.with_format("torch", device=accelerator.device)
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=shuffle,
collate_fn=TextAudioCollateMultiNSFsid(),
)
loader = accelerator.prepare(loader)
return loader
def run(
self,
G,
D,
optimizer_G,
optimizer_D,
scheduler_G,
scheduler_D,
finished_epoch,
loader_train,
loader_test,
accelerator: Accelerator | None = None,
epochs=100,
segment_size=17280,
filter_length=N_FFT,
hop_length=HOP_LENGTH,
n_mel_channels=N_MELS,
win_length=WIN_LENGTH,
mel_fmin=0.0,
mel_fmax: float | None = None,
c_mel=45,
c_kl=1.0,
upload_to_hub: str | None = None,
upload_window_minutes=5,
):
if accelerator is None:
accelerator = Accelerator()
if accelerator.is_main_process:
logger.info("Start training")
upload_state_last = 0.0
prev_loss_gen = -1.0
prev_loss_fm = -1.0
prev_loss_mel = -1.0
prev_loss_kl = -1.0
prev_loss_disc = -1.0
prev_loss_gen_all = -1.0
with accelerator.autocast():
epoch_iterator = tqdm(
range(1, epochs + 1),
desc="Training",
disable=not accelerator.is_main_process,
)
for epoch in epoch_iterator:
if epoch <= finished_epoch:
continue
G.train()
D.train()
epoch_loss_gen = 0.0
epoch_loss_fm = 0.0
epoch_loss_mel = 0.0
epoch_loss_kl = 0.0
epoch_loss_disc = 0.0
epoch_loss_gen_all = 0.0
num_batches = 0
batch_iterator = tqdm(
loader_train,
desc=f"Epoch {epoch}",
leave=False,
disable=not accelerator.is_main_process,
)
for batch in batch_iterator:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = batch
# Generator
optimizer_G.zero_grad()
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = G(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
sid,
)
mel = spec_to_mel_torch(
spec,
filter_length,
n_mel_channels,
self.sr,
mel_fmin,
mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, segment_size // hop_length
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
filter_length,
n_mel_channels,
self.sr,
hop_length,
win_length,
mel_fmin,
mel_fmax,
)
wave = commons.slice_segments(
wave, ids_slice * hop_length, segment_size
)
# Discriminator
optimizer_D.zero_grad()
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = D(wave, y_hat.detach())
# Update Discriminator
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
accelerator.backward(loss_disc)
optimizer_D.step()
# Re-compute discriminator output (since we just got a "better" discriminator)
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = D(wave, y_hat)
# Update Generator
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_mel = F.l1_loss(y_mel, y_hat_mel) * c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
accelerator.backward(loss_gen_all)
optimizer_G.step()
prev_loss_gen = loss_gen.item()
prev_loss_fm = loss_fm.item()
prev_loss_mel = loss_mel.item()
prev_loss_kl = loss_kl.item()
prev_loss_disc = loss_disc.item()
prev_loss_gen_all = loss_gen_all.item()
# Update progress bar with current losses
if accelerator.is_main_process:
batch_iterator.set_postfix(
{
"g_loss": f"{prev_loss_gen:.4f}",
"d_loss": f"{prev_loss_disc:.4f}",
"mel_loss": f"{prev_loss_mel:.4f}",
"total": f"{prev_loss_gen_all:.4f}",
}
)
epoch_loss_gen += prev_loss_gen
epoch_loss_fm += prev_loss_fm
epoch_loss_mel += prev_loss_mel
epoch_loss_kl += prev_loss_kl
epoch_loss_disc += prev_loss_disc
epoch_loss_gen_all += prev_loss_gen_all
num_batches += 1
scheduler_G.step()
scheduler_D.step()
if accelerator.is_main_process and num_batches > 0:
avg_gen = epoch_loss_gen / num_batches
avg_disc = epoch_loss_disc / num_batches
avg_fm = epoch_loss_fm / num_batches
avg_mel = epoch_loss_mel / num_batches
avg_kl = epoch_loss_kl / num_batches
avg_total = epoch_loss_gen_all / num_batches
logger.info(
f"Epoch {epoch} | "
f"Generator Loss: {avg_gen:.4f} | "
f"Discriminator Loss: {avg_disc:.4f} | "
f"Mel Loss: {avg_mel:.4f} | "
f"Total Loss: {avg_total:.4f}"
)
# Update epoch progress bar
epoch_iterator.set_postfix(
{
"g_loss": f"{avg_gen:.4f}",
"d_loss": f"{avg_disc:.4f}",
"total": f"{avg_total:.4f}",
}
)
self.writer.add_scalar("Loss/Generator", avg_gen, epoch)
self.writer.add_scalar("Loss/Feature_Matching", avg_fm, epoch)
self.writer.add_scalar("Loss/Mel", avg_mel, epoch)
self.writer.add_scalar("Loss/KL", avg_kl, epoch)
self.writer.add_scalar("Loss/Discriminator", avg_disc, epoch)
self.writer.add_scalar("Loss/Generator_Total", avg_total, epoch)
self.writer.add_scalar(
"Learning_Rate/Generator",
scheduler_G.get_last_lr()[0],
epoch,
)
self.writer.add_scalar(
"Learning_Rate/Discriminator",
scheduler_D.get_last_lr()[0],
epoch,
)
if loader_test is not None:
with torch.no_grad():
sample_idx = 0
test_iterator = tqdm(
loader_test,
desc=f"Testing epoch {epoch}",
leave=False,
disable=not accelerator.is_main_process,
)
for batch_idx, (
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) in enumerate(test_iterator):
# Generate audio for each sample in the batch
audio_segments = G.infer(
phone, phone_lengths, pitch, pitchf, sid
)[0]
# Log each audio sample in the batch
for i, audio in enumerate(audio_segments):
audio_numpy = audio[0].data.cpu().float().numpy()
self.writer.add_audio(
f"Audio/{sample_idx}",
audio_numpy,
epoch,
sample_rate=self.sr,
)
sample_idx += 1
res = TrainingCheckpoint(
epoch,
G,
D,
optimizer_G,
optimizer_D,
scheduler_G,
scheduler_D,
prev_loss_gen,
prev_loss_fm,
prev_loss_mel,
prev_loss_kl,
prev_loss_gen_all,
prev_loss_disc,
)
res.save(self.exp_dir)
G.save_pretrained(self.exp_dir)
if upload_to_hub is not None:
if (
time.time() - upload_state_last > 60 * upload_window_minutes
or epoch == epochs
):
try:
self.push_to_hub(upload_to_hub)
upload_state_last = time.time()
except Exception:
logger.error(f"Failed to upload to Hub.", exc_info=1)
else:
next_upload = 60 * upload_window_minutes - (
time.time() - upload_state_last
)
logger.info(
f"Skipping upload to Hub (next upload in {next_upload:.0f} seconds)"
)
def train(
self,
resume_from: Tuple[str, str] | None = None,
accelerator: Accelerator | None = None,
batch_size=1,
epochs=100,
lr=1e-4,
lr_decay=0.999875,
betas: Tuple[float, float] = (0.8, 0.99),
eps=1e-9,
use_spectral_norm=False,
segment_size=17280,
filter_length=N_FFT,
hop_length=HOP_LENGTH,
inter_channels=192,
hidden_channels=192,
filter_channels=768,
n_heads=2,
n_layers=6,
kernel_size=3,
p_dropout=0.0,
resblock: Literal["1", "2"] = "1",
resblock_kernel_sizes: list[int] = [3, 7, 11],
resblock_dilation_sizes: list[list[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_initial_channel=512,
upsample_rates: list[int] = [12, 10, 2, 2],
upsample_kernel_sizes: list[int] = [24, 20, 4, 4],
spk_embed_dim=109,
gin_channels=256,
n_mel_channels=N_MELS,
win_length=WIN_LENGTH,
mel_fmin=0.0,
mel_fmax: float | None = None,
c_mel=45,
c_kl=1.0,
upload_to_hub: str | None = None,
):
if not os.path.exists(self.exp_dir):
os.makedirs(self.exp_dir)
if accelerator is None:
accelerator = Accelerator()
(
G,
D,
optimizer_G,
optimizer_D,
scheduler_G,
scheduler_D,
finished_epoch,
) = self.setup_models(
resume_from=resume_from or self.latest_checkpoint(),
accelerator=accelerator,
lr=lr,
lr_decay=lr_decay,
betas=betas,
eps=eps,
use_spectral_norm=use_spectral_norm,
segment_size=segment_size,
filter_length=filter_length,
hop_length=hop_length,
inter_channels=inter_channels,
hidden_channels=hidden_channels,
filter_channels=filter_channels,
n_heads=n_heads,
n_layers=n_layers,
kernel_size=kernel_size,
p_dropout=p_dropout,
resblock=resblock,
resblock_kernel_sizes=resblock_kernel_sizes,
resblock_dilation_sizes=resblock_dilation_sizes,
upsample_initial_channel=upsample_initial_channel,
upsample_rates=upsample_rates,
upsample_kernel_sizes=upsample_kernel_sizes,
spk_embed_dim=spk_embed_dim,
gin_channels=gin_channels,
)
loader_train = self.setup_dataloader(
self.dataset_train,
batch_size=batch_size,
accelerator=accelerator,
)
loader_test = (
self.setup_dataloader(
self.dataset_test,
batch_size=batch_size,
accelerator=accelerator,
shuffle=False,
)
if self.dataset_test is not None
else None
)
return self.run(
G,
D,
optimizer_G,
optimizer_D,
scheduler_G,
scheduler_D,
finished_epoch,
loader_train,
loader_test,
accelerator,
epochs=epochs,
segment_size=segment_size,
filter_length=filter_length,
hop_length=hop_length,
n_mel_channels=n_mel_channels,
win_length=win_length,
mel_fmin=mel_fmin,
mel_fmax=mel_fmax,
c_mel=c_mel,
c_kl=c_kl,
upload_to_hub=upload_to_hub,
)
def push_to_hub(self, repo: str, private: bool = True):
if not os.path.exists(self.exp_dir):
raise FileNotFoundError("exp_dir not found")
api = HfApi()
repo_id = api.create_repo(repo_id=repo, private=private, exist_ok=True).repo_id
return upload_folder(
repo_id=repo_id,
folder_path=self.exp_dir,
commit_message="Upload via ZeroRVC",
)
def __del__(self):
if hasattr(self, "writer"):
self.writer.close()
|