File size: 24,667 Bytes
2d9b22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import os
from glob import glob
from logging import getLogger
from typing import Literal, Optional, Tuple
from pathlib import Path
from threading import Thread
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from accelerate import Accelerator
from datasets import Dataset
from .pretrained import pretrained_checkpoints
from .constants import *
from torch.utils.tensorboard import SummaryWriter
import time
from tqdm.auto import tqdm
from huggingface_hub import HfApi, upload_folder

from .synthesizer import commons
from .synthesizer.models import (
    SynthesizerTrnMs768NSFsid,
    MultiPeriodDiscriminator,
)

from .utils.losses import (
    discriminator_loss,
    feature_loss,
    generator_loss,
    kl_loss,
)
from .utils.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from .utils.data_utils import TextAudioCollateMultiNSFsid

logger = getLogger(__name__)


class TrainingCheckpoint:
    def __init__(
        self,
        epoch: int,
        G: SynthesizerTrnMs768NSFsid,
        D: MultiPeriodDiscriminator,
        optimizer_G: torch.optim.AdamW,
        optimizer_D: torch.optim.AdamW,
        scheduler_G: torch.optim.lr_scheduler.ExponentialLR,
        scheduler_D: torch.optim.lr_scheduler.ExponentialLR,
        loss_gen: float,
        loss_fm: float,
        loss_mel: float,
        loss_kl: float,
        loss_gen_all: float,
        loss_disc: float,
    ):
        self.epoch = epoch
        self.G = G
        self.D = D
        self.optimizer_G = optimizer_G
        self.optimizer_D = optimizer_D
        self.scheduler_G = scheduler_G
        self.scheduler_D = scheduler_D
        self.loss_gen = loss_gen
        self.loss_fm = loss_fm
        self.loss_mel = loss_mel
        self.loss_kl = loss_kl
        self.loss_gen_all = loss_gen_all
        self.loss_disc = loss_disc

    def save(
        self,
        exp_dir="./",
        g_checkpoint: str | None = None,
        d_checkpoint: str | None = None,
    ):
        g_path = g_checkpoint if g_checkpoint is not None else f"G_latest.pth"
        d_path = d_checkpoint if d_checkpoint is not None else f"D_latest.pth"
        torch.save(
            {
                "epoch": self.epoch,
                "model": self.G.state_dict(),
                "optimizer": self.optimizer_G.state_dict(),
                "scheduler": self.scheduler_G.state_dict(),
                "loss_gen": self.loss_gen,
                "loss_fm": self.loss_fm,
                "loss_mel": self.loss_mel,
                "loss_kl": self.loss_kl,
                "loss_gen_all": self.loss_gen_all,
                "loss_disc": self.loss_disc,
            },
            os.path.join(exp_dir, g_path),
        )
        torch.save(
            {
                "epoch": self.epoch,
                "model": self.D.state_dict(),
                "optimizer": self.optimizer_D.state_dict(),
                "scheduler": self.scheduler_D.state_dict(),
            },
            os.path.join(exp_dir, d_path),
        )


def latest_checkpoint_file(files: list[str]) -> str:
    try:
        return max(files, key=lambda x: int(Path(x).stem.split("_")[1]))
    except:
        return max(files, key=os.path.getctime)


class RVCTrainer:
    def __init__(
        self,
        exp_dir: str,
        dataset_train: Dataset,
        dataset_test: Optional[Dataset] = None,
        sr: int = SR_48K,
    ):
        self.exp_dir = exp_dir
        self.dataset_train = dataset_train
        self.dataset_test = dataset_test
        self.sr = sr
        self.writer = SummaryWriter(
            os.path.join(exp_dir, "logs", time.strftime("%Y%m%d-%H%M%S"))
        )

    def latest_checkpoint(self, fallback_to_pretrained: bool = True):
        files_g = glob(os.path.join(self.exp_dir, "G_*.pth"))
        if not files_g:
            return pretrained_checkpoints() if fallback_to_pretrained else None
        latest_g = latest_checkpoint_file(files_g)

        files_d = glob(os.path.join(self.exp_dir, "D_*.pth"))
        if not files_d:
            return pretrained_checkpoints() if fallback_to_pretrained else None
        latest_d = latest_checkpoint_file(files_d)

        return latest_g, latest_d

    def setup_models(
        self,
        resume_from: Tuple[str, str] | None = None,
        accelerator: Accelerator | None = None,
        lr=1e-4,
        lr_decay=0.999875,
        betas: Tuple[float, float] = (0.8, 0.99),
        eps=1e-9,
        use_spectral_norm=False,
        segment_size=17280,
        filter_length=N_FFT,
        hop_length=HOP_LENGTH,
        inter_channels=192,
        hidden_channels=192,
        filter_channels=768,
        n_heads=2,
        n_layers=6,
        kernel_size=3,
        p_dropout=0.0,
        resblock: Literal["1", "2"] = "1",
        resblock_kernel_sizes: list[int] = [3, 7, 11],
        resblock_dilation_sizes: list[list[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        upsample_initial_channel=512,
        upsample_rates: list[int] = [12, 10, 2, 2],
        upsample_kernel_sizes: list[int] = [24, 20, 4, 4],
        spk_embed_dim=109,
        gin_channels=256,
    ) -> Tuple[
        SynthesizerTrnMs768NSFsid,
        MultiPeriodDiscriminator,
        torch.optim.AdamW,
        torch.optim.AdamW,
        torch.optim.lr_scheduler.ExponentialLR,
        torch.optim.lr_scheduler.ExponentialLR,
        int,
    ]:
        if accelerator is None:
            accelerator = Accelerator()

        G = SynthesizerTrnMs768NSFsid(
            spec_channels=filter_length // 2 + 1,
            segment_size=segment_size // hop_length,
            inter_channels=inter_channels,
            hidden_channels=hidden_channels,
            filter_channels=filter_channels,
            n_heads=n_heads,
            n_layers=n_layers,
            kernel_size=kernel_size,
            p_dropout=p_dropout,
            resblock=resblock,
            resblock_kernel_sizes=resblock_kernel_sizes,
            resblock_dilation_sizes=resblock_dilation_sizes,
            upsample_initial_channel=upsample_initial_channel,
            upsample_rates=upsample_rates,
            upsample_kernel_sizes=upsample_kernel_sizes,
            spk_embed_dim=spk_embed_dim,
            gin_channels=gin_channels,
            sr=self.sr,
        ).to(accelerator.device)
        D = MultiPeriodDiscriminator(use_spectral_norm=use_spectral_norm).to(
            accelerator.device
        )

        optimizer_G = torch.optim.AdamW(
            G.parameters(),
            lr,
            betas=betas,
            eps=eps,
        )
        optimizer_D = torch.optim.AdamW(
            D.parameters(),
            lr,
            betas=betas,
            eps=eps,
        )

        if resume_from is not None:
            g_checkpoint, d_checkpoint = resume_from
            logger.info(f"Resuming from {g_checkpoint} and {d_checkpoint}")

            G_checkpoint = torch.load(
                g_checkpoint, map_location=accelerator.device, weights_only=True
            )
            D_checkpoint = torch.load(
                d_checkpoint, map_location=accelerator.device, weights_only=True
            )

            if "epoch" in G_checkpoint:
                finished_epoch = int(G_checkpoint["epoch"])
            try:
                finished_epoch = int(Path(g_checkpoint).stem.split("_")[1])
            except:
                finished_epoch = 0

            scheduler_G = torch.optim.lr_scheduler.ExponentialLR(
                optimizer_G, gamma=lr_decay, last_epoch=finished_epoch - 1
            )
            scheduler_D = torch.optim.lr_scheduler.ExponentialLR(
                optimizer_D, gamma=lr_decay, last_epoch=finished_epoch - 1
            )

            G.load_state_dict(G_checkpoint["model"])
            if "optimizer" in G_checkpoint:
                optimizer_G.load_state_dict(G_checkpoint["optimizer"])
            if "scheduler" in G_checkpoint:
                scheduler_G.load_state_dict(G_checkpoint["scheduler"])

            D.load_state_dict(D_checkpoint["model"])
            if "optimizer" in D_checkpoint:
                optimizer_D.load_state_dict(D_checkpoint["optimizer"])
            if "scheduler" in D_checkpoint:
                scheduler_D.load_state_dict(D_checkpoint["scheduler"])
        else:
            finished_epoch = 0
            scheduler_G = torch.optim.lr_scheduler.ExponentialLR(
                optimizer_G, gamma=lr_decay, last_epoch=-1
            )
            scheduler_D = torch.optim.lr_scheduler.ExponentialLR(
                optimizer_D, gamma=lr_decay, last_epoch=-1
            )

        G, D, optimizer_G, optimizer_D = accelerator.prepare(
            G, D, optimizer_G, optimizer_D
        )

        return G, D, optimizer_G, optimizer_D, scheduler_G, scheduler_D, finished_epoch

    def setup_dataloader(
        self,
        dataset: Dataset,
        batch_size=1,
        shuffle=True,
        accelerator: Accelerator | None = None,
    ):
        if accelerator is None:
            accelerator = Accelerator()

        dataset = dataset.with_format("torch", device=accelerator.device)
        loader = DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=shuffle,
            collate_fn=TextAudioCollateMultiNSFsid(),
        )
        loader = accelerator.prepare(loader)
        return loader

    def run(
        self,
        G,
        D,
        optimizer_G,
        optimizer_D,
        scheduler_G,
        scheduler_D,
        finished_epoch,
        loader_train,
        loader_test,
        accelerator: Accelerator | None = None,
        epochs=100,
        segment_size=17280,
        filter_length=N_FFT,
        hop_length=HOP_LENGTH,
        n_mel_channels=N_MELS,
        win_length=WIN_LENGTH,
        mel_fmin=0.0,
        mel_fmax: float | None = None,
        c_mel=45,
        c_kl=1.0,
        upload_to_hub: str | None = None,
        upload_window_minutes=5,
    ):
        if accelerator is None:
            accelerator = Accelerator()

        if accelerator.is_main_process:
            logger.info("Start training")

        upload_state_last = 0.0

        prev_loss_gen = -1.0
        prev_loss_fm = -1.0
        prev_loss_mel = -1.0
        prev_loss_kl = -1.0
        prev_loss_disc = -1.0
        prev_loss_gen_all = -1.0

        with accelerator.autocast():
            epoch_iterator = tqdm(
                range(1, epochs + 1),
                desc="Training",
                disable=not accelerator.is_main_process,
            )
            for epoch in epoch_iterator:
                if epoch <= finished_epoch:
                    continue

                G.train()
                D.train()

                epoch_loss_gen = 0.0
                epoch_loss_fm = 0.0
                epoch_loss_mel = 0.0
                epoch_loss_kl = 0.0
                epoch_loss_disc = 0.0
                epoch_loss_gen_all = 0.0
                num_batches = 0

                batch_iterator = tqdm(
                    loader_train,
                    desc=f"Epoch {epoch}",
                    leave=False,
                    disable=not accelerator.is_main_process,
                )
                for batch in batch_iterator:
                    (
                        phone,
                        phone_lengths,
                        pitch,
                        pitchf,
                        spec,
                        spec_lengths,
                        wave,
                        wave_lengths,
                        sid,
                    ) = batch

                    # Generator
                    optimizer_G.zero_grad()
                    (
                        y_hat,
                        ids_slice,
                        x_mask,
                        z_mask,
                        (z, z_p, m_p, logs_p, m_q, logs_q),
                    ) = G(
                        phone,
                        phone_lengths,
                        pitch,
                        pitchf,
                        spec,
                        spec_lengths,
                        sid,
                    )
                    mel = spec_to_mel_torch(
                        spec,
                        filter_length,
                        n_mel_channels,
                        self.sr,
                        mel_fmin,
                        mel_fmax,
                    )
                    y_mel = commons.slice_segments(
                        mel, ids_slice, segment_size // hop_length
                    )
                    y_hat_mel = mel_spectrogram_torch(
                        y_hat.squeeze(1),
                        filter_length,
                        n_mel_channels,
                        self.sr,
                        hop_length,
                        win_length,
                        mel_fmin,
                        mel_fmax,
                    )
                    wave = commons.slice_segments(
                        wave, ids_slice * hop_length, segment_size
                    )

                    # Discriminator
                    optimizer_D.zero_grad()
                    y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = D(wave, y_hat.detach())

                    # Update Discriminator
                    loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
                        y_d_hat_r, y_d_hat_g
                    )
                    accelerator.backward(loss_disc)
                    optimizer_D.step()

                    # Re-compute discriminator output (since we just got a "better" discriminator)
                    y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = D(wave, y_hat)

                    # Update Generator
                    loss_gen, losses_gen = generator_loss(y_d_hat_g)
                    loss_mel = F.l1_loss(y_mel, y_hat_mel) * c_mel
                    loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * c_kl
                    loss_fm = feature_loss(fmap_r, fmap_g)
                    loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
                    accelerator.backward(loss_gen_all)
                    optimizer_G.step()

                    prev_loss_gen = loss_gen.item()
                    prev_loss_fm = loss_fm.item()
                    prev_loss_mel = loss_mel.item()
                    prev_loss_kl = loss_kl.item()
                    prev_loss_disc = loss_disc.item()
                    prev_loss_gen_all = loss_gen_all.item()

                    # Update progress bar with current losses
                    if accelerator.is_main_process:
                        batch_iterator.set_postfix(
                            {
                                "g_loss": f"{prev_loss_gen:.4f}",
                                "d_loss": f"{prev_loss_disc:.4f}",
                                "mel_loss": f"{prev_loss_mel:.4f}",
                                "total": f"{prev_loss_gen_all:.4f}",
                            }
                        )

                    epoch_loss_gen += prev_loss_gen
                    epoch_loss_fm += prev_loss_fm
                    epoch_loss_mel += prev_loss_mel
                    epoch_loss_kl += prev_loss_kl
                    epoch_loss_disc += prev_loss_disc
                    epoch_loss_gen_all += prev_loss_gen_all
                    num_batches += 1

                scheduler_G.step()
                scheduler_D.step()

                if accelerator.is_main_process and num_batches > 0:
                    avg_gen = epoch_loss_gen / num_batches
                    avg_disc = epoch_loss_disc / num_batches
                    avg_fm = epoch_loss_fm / num_batches
                    avg_mel = epoch_loss_mel / num_batches
                    avg_kl = epoch_loss_kl / num_batches
                    avg_total = epoch_loss_gen_all / num_batches

                    logger.info(
                        f"Epoch {epoch} | "
                        f"Generator Loss: {avg_gen:.4f} | "
                        f"Discriminator Loss: {avg_disc:.4f} | "
                        f"Mel Loss: {avg_mel:.4f} | "
                        f"Total Loss: {avg_total:.4f}"
                    )

                    # Update epoch progress bar
                    epoch_iterator.set_postfix(
                        {
                            "g_loss": f"{avg_gen:.4f}",
                            "d_loss": f"{avg_disc:.4f}",
                            "total": f"{avg_total:.4f}",
                        }
                    )

                    self.writer.add_scalar("Loss/Generator", avg_gen, epoch)
                    self.writer.add_scalar("Loss/Feature_Matching", avg_fm, epoch)
                    self.writer.add_scalar("Loss/Mel", avg_mel, epoch)
                    self.writer.add_scalar("Loss/KL", avg_kl, epoch)
                    self.writer.add_scalar("Loss/Discriminator", avg_disc, epoch)
                    self.writer.add_scalar("Loss/Generator_Total", avg_total, epoch)
                    self.writer.add_scalar(
                        "Learning_Rate/Generator",
                        scheduler_G.get_last_lr()[0],
                        epoch,
                    )
                    self.writer.add_scalar(
                        "Learning_Rate/Discriminator",
                        scheduler_D.get_last_lr()[0],
                        epoch,
                    )

                if loader_test is not None:
                    with torch.no_grad():
                        sample_idx = 0
                        test_iterator = tqdm(
                            loader_test,
                            desc=f"Testing epoch {epoch}",
                            leave=False,
                            disable=not accelerator.is_main_process,
                        )
                        for batch_idx, (
                            phone,
                            phone_lengths,
                            pitch,
                            pitchf,
                            spec,
                            spec_lengths,
                            wave,
                            wave_lengths,
                            sid,
                        ) in enumerate(test_iterator):
                            # Generate audio for each sample in the batch
                            audio_segments = G.infer(
                                phone, phone_lengths, pitch, pitchf, sid
                            )[0]

                            # Log each audio sample in the batch
                            for i, audio in enumerate(audio_segments):
                                audio_numpy = audio[0].data.cpu().float().numpy()
                                self.writer.add_audio(
                                    f"Audio/{sample_idx}",
                                    audio_numpy,
                                    epoch,
                                    sample_rate=self.sr,
                                )
                                sample_idx += 1

                res = TrainingCheckpoint(
                    epoch,
                    G,
                    D,
                    optimizer_G,
                    optimizer_D,
                    scheduler_G,
                    scheduler_D,
                    prev_loss_gen,
                    prev_loss_fm,
                    prev_loss_mel,
                    prev_loss_kl,
                    prev_loss_gen_all,
                    prev_loss_disc,
                )

                res.save(self.exp_dir)
                G.save_pretrained(self.exp_dir)

                if upload_to_hub is not None:
                    if (
                        time.time() - upload_state_last > 60 * upload_window_minutes
                        or epoch == epochs
                    ):
                        try:
                            self.push_to_hub(upload_to_hub)
                            upload_state_last = time.time()
                        except Exception:
                            logger.error(f"Failed to upload to Hub.", exc_info=1)
                    else:
                        next_upload = 60 * upload_window_minutes - (
                            time.time() - upload_state_last
                        )
                        logger.info(
                            f"Skipping upload to Hub (next upload in {next_upload:.0f} seconds)"
                        )

    def train(
        self,
        resume_from: Tuple[str, str] | None = None,
        accelerator: Accelerator | None = None,
        batch_size=1,
        epochs=100,
        lr=1e-4,
        lr_decay=0.999875,
        betas: Tuple[float, float] = (0.8, 0.99),
        eps=1e-9,
        use_spectral_norm=False,
        segment_size=17280,
        filter_length=N_FFT,
        hop_length=HOP_LENGTH,
        inter_channels=192,
        hidden_channels=192,
        filter_channels=768,
        n_heads=2,
        n_layers=6,
        kernel_size=3,
        p_dropout=0.0,
        resblock: Literal["1", "2"] = "1",
        resblock_kernel_sizes: list[int] = [3, 7, 11],
        resblock_dilation_sizes: list[list[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        upsample_initial_channel=512,
        upsample_rates: list[int] = [12, 10, 2, 2],
        upsample_kernel_sizes: list[int] = [24, 20, 4, 4],
        spk_embed_dim=109,
        gin_channels=256,
        n_mel_channels=N_MELS,
        win_length=WIN_LENGTH,
        mel_fmin=0.0,
        mel_fmax: float | None = None,
        c_mel=45,
        c_kl=1.0,
        upload_to_hub: str | None = None,
    ):
        if not os.path.exists(self.exp_dir):
            os.makedirs(self.exp_dir)

        if accelerator is None:
            accelerator = Accelerator()

        (
            G,
            D,
            optimizer_G,
            optimizer_D,
            scheduler_G,
            scheduler_D,
            finished_epoch,
        ) = self.setup_models(
            resume_from=resume_from or self.latest_checkpoint(),
            accelerator=accelerator,
            lr=lr,
            lr_decay=lr_decay,
            betas=betas,
            eps=eps,
            use_spectral_norm=use_spectral_norm,
            segment_size=segment_size,
            filter_length=filter_length,
            hop_length=hop_length,
            inter_channels=inter_channels,
            hidden_channels=hidden_channels,
            filter_channels=filter_channels,
            n_heads=n_heads,
            n_layers=n_layers,
            kernel_size=kernel_size,
            p_dropout=p_dropout,
            resblock=resblock,
            resblock_kernel_sizes=resblock_kernel_sizes,
            resblock_dilation_sizes=resblock_dilation_sizes,
            upsample_initial_channel=upsample_initial_channel,
            upsample_rates=upsample_rates,
            upsample_kernel_sizes=upsample_kernel_sizes,
            spk_embed_dim=spk_embed_dim,
            gin_channels=gin_channels,
        )

        loader_train = self.setup_dataloader(
            self.dataset_train,
            batch_size=batch_size,
            accelerator=accelerator,
        )

        loader_test = (
            self.setup_dataloader(
                self.dataset_test,
                batch_size=batch_size,
                accelerator=accelerator,
                shuffle=False,
            )
            if self.dataset_test is not None
            else None
        )

        return self.run(
            G,
            D,
            optimizer_G,
            optimizer_D,
            scheduler_G,
            scheduler_D,
            finished_epoch,
            loader_train,
            loader_test,
            accelerator,
            epochs=epochs,
            segment_size=segment_size,
            filter_length=filter_length,
            hop_length=hop_length,
            n_mel_channels=n_mel_channels,
            win_length=win_length,
            mel_fmin=mel_fmin,
            mel_fmax=mel_fmax,
            c_mel=c_mel,
            c_kl=c_kl,
            upload_to_hub=upload_to_hub,
        )

    def push_to_hub(self, repo: str, private: bool = True):
        if not os.path.exists(self.exp_dir):
            raise FileNotFoundError("exp_dir not found")

        api = HfApi()
        repo_id = api.create_repo(repo_id=repo, private=private, exist_ok=True).repo_id

        return upload_folder(
            repo_id=repo_id,
            folder_path=self.exp_dir,
            commit_message="Upload via ZeroRVC",
        )

    def __del__(self):
        if hasattr(self, "writer"):
            self.writer.close()