Spaces:
Sleeping
Sleeping
File size: 1,450 Bytes
108107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
from huggingface_hub import InferenceClient
model_id = "JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-2"
client = InferenceClient(model_id)
def transcribe_audio(audio: str) -> str:
out = client.automatic_speech_recognition(audio)
return out.text
with gr.Blocks() as demo:
gr.Markdown("# TWASR: Chinese (Taiwan) Automatic Speech Recognition.")
gr.Markdown("Upload an audio file or record your voice to transcribe it to text.")
gr.Markdown(
"First load may take a while to initialize the model, following requests will be faster."
)
with gr.Row():
audio_input = gr.Audio(
label="Audio", type="filepath", show_download_button=True
)
text_output = gr.Textbox(label="Transcription")
transcribe_button = gr.Button("Transcribe with Inference API")
transcribe_button.click(
fn=transcribe_audio, inputs=[audio_input], outputs=[text_output]
)
gr.Examples(
[
["./examples/audio1.mp3"],
["./examples/audio2.mp3"],
],
inputs=[audio_input],
outputs=[text_output],
fn=transcribe_audio,
cache_examples=True,
cache_mode="lazy",
run_on_click=True,
)
gr.Markdown(
f"Current model: {model_id}. For more information, visit the [model hub](https://huggingface.co/{model_id})."
)
if __name__ == "__main__":
demo.launch()
|