Splend1dchan's picture
init
bcf08c1
import random
from typing import Any, Dict, Optional
import torch
import torchaudio as ta
from lightning import LightningDataModule
from torch.utils.data.dataloader import DataLoader
from matcha.text import text_to_sequence
from matcha.utils.audio import mel_spectrogram
from matcha.utils.model import fix_len_compatibility, normalize
from matcha.utils.utils import intersperse
def parse_filelist(filelist_path, split_char="|"):
with open(filelist_path, encoding="utf-8") as f:
filepaths_and_text = [line.strip().split(split_char) for line in f]
return filepaths_and_text
class TextMelDataModule(LightningDataModule):
def __init__( # pylint: disable=unused-argument
self,
name,
train_filelist_path,
valid_filelist_path,
batch_size,
num_workers,
pin_memory,
cleaners,
add_blank,
n_spks,
n_fft,
n_feats,
sample_rate,
hop_length,
win_length,
f_min,
f_max,
data_statistics,
seed,
):
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
def setup(self, stage: Optional[str] = None): # pylint: disable=unused-argument
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
careful not to execute things like random split twice!
"""
# load and split datasets only if not loaded already
self.trainset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
self.hparams.train_filelist_path,
self.hparams.n_spks,
self.hparams.cleaners,
self.hparams.add_blank,
self.hparams.n_fft,
self.hparams.n_feats,
self.hparams.sample_rate,
self.hparams.hop_length,
self.hparams.win_length,
self.hparams.f_min,
self.hparams.f_max,
self.hparams.data_statistics,
self.hparams.seed,
)
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
self.hparams.valid_filelist_path,
self.hparams.n_spks,
self.hparams.cleaners,
self.hparams.add_blank,
self.hparams.n_fft,
self.hparams.n_feats,
self.hparams.sample_rate,
self.hparams.hop_length,
self.hparams.win_length,
self.hparams.f_min,
self.hparams.f_max,
self.hparams.data_statistics,
self.hparams.seed,
)
def train_dataloader(self):
return DataLoader(
dataset=self.trainset,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=True,
collate_fn=TextMelBatchCollate(self.hparams.n_spks),
)
def val_dataloader(self):
return DataLoader(
dataset=self.validset,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
collate_fn=TextMelBatchCollate(self.hparams.n_spks),
)
def teardown(self, stage: Optional[str] = None):
"""Clean up after fit or test."""
pass # pylint: disable=unnecessary-pass
def state_dict(self): # pylint: disable=no-self-use
"""Extra things to save to checkpoint."""
return {}
def load_state_dict(self, state_dict: Dict[str, Any]):
"""Things to do when loading checkpoint."""
pass # pylint: disable=unnecessary-pass
class TextMelDataset(torch.utils.data.Dataset):
def __init__(
self,
filelist_path,
n_spks,
cleaners,
add_blank=True,
n_fft=1024,
n_mels=80,
sample_rate=22050,
hop_length=256,
win_length=1024,
f_min=0.0,
f_max=8000,
data_parameters=None,
seed=None,
):
self.filepaths_and_text = parse_filelist(filelist_path)
self.n_spks = n_spks
self.cleaners = cleaners
self.add_blank = add_blank
self.n_fft = n_fft
self.n_mels = n_mels
self.sample_rate = sample_rate
self.hop_length = hop_length
self.win_length = win_length
self.f_min = f_min
self.f_max = f_max
if data_parameters is not None:
self.data_parameters = data_parameters
else:
self.data_parameters = {"mel_mean": 0, "mel_std": 1}
random.seed(seed)
random.shuffle(self.filepaths_and_text)
def get_datapoint(self, filepath_and_text):
if self.n_spks > 1:
filepath, spk, text = (
filepath_and_text[0],
int(filepath_and_text[1]),
filepath_and_text[2],
)
else:
filepath, text = filepath_and_text[0], filepath_and_text[1]
spk = None
text = self.get_text(text, add_blank=self.add_blank)
mel = self.get_mel(filepath)
return {"x": text, "y": mel, "spk": spk}
def get_mel(self, filepath):
audio, sr = ta.load(filepath)
assert sr == self.sample_rate
mel = mel_spectrogram(
audio,
self.n_fft,
self.n_mels,
self.sample_rate,
self.hop_length,
self.win_length,
self.f_min,
self.f_max,
center=False,
).squeeze()
mel = normalize(mel, self.data_parameters["mel_mean"], self.data_parameters["mel_std"])
return mel
def get_text(self, text, add_blank=True):
text_norm = text_to_sequence(text, self.cleaners)
if self.add_blank:
text_norm = intersperse(text_norm, 0)
text_norm = torch.IntTensor(text_norm)
return text_norm
def __getitem__(self, index):
datapoint = self.get_datapoint(self.filepaths_and_text[index])
return datapoint
def __len__(self):
return len(self.filepaths_and_text)
class TextMelBatchCollate:
def __init__(self, n_spks):
self.n_spks = n_spks
def __call__(self, batch):
B = len(batch)
y_max_length = max([item["y"].shape[-1] for item in batch])
y_max_length = fix_len_compatibility(y_max_length)
x_max_length = max([item["x"].shape[-1] for item in batch])
n_feats = batch[0]["y"].shape[-2]
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
x = torch.zeros((B, x_max_length), dtype=torch.long)
y_lengths, x_lengths = [], []
spks = []
for i, item in enumerate(batch):
y_, x_ = item["y"], item["x"]
y_lengths.append(y_.shape[-1])
x_lengths.append(x_.shape[-1])
y[i, :, : y_.shape[-1]] = y_
x[i, : x_.shape[-1]] = x_
spks.append(item["spk"])
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks}