BreezyVoice / app.py
JacobLinCool's picture
Update app.py
671d69d verified
raw
history blame
7.01 kB
# Copyright (c) 2025 MediaTek Reserch Inc (authors: Chan-Jan Hsu)
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
import argparse
import gradio as gr
import numpy as np
import torch
torch.set_num_threads(1)
import torchaudio
import random
import librosa
from transformers import pipeline
import subprocess
from scipy.signal import resample
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav, speed_change
#logging.basicConfig(level=logging.DEBUG,
# format='%(asctime)s %(levelname)s %(message)s')
def generate_seed():
seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": seed
}
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
max_val = 0.8
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
speech, _ = librosa.effects.trim(
speech, top_db=top_db,
frame_length=win_length,
hop_length=hop_length
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
return speech
@spaces.GPU
def generate_audio(tts_text, prompt_text, prompt_wav, seed):
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
speed_factor = 1
if speed_factor != 1.0:
#try:
#audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
#audio_data = audio_data.numpy().flatten()
new_length = int(len(output['tts_speech']) / speed_factor)
audio_data = resample(output['tts_speech'], new_length)
# except Exception as e:
# print(f"Failed to change speed of audio: \n{e}")
else:
audio_data = output['tts_speech'].numpy().flatten()
return (target_sr, audio_data)
@spaces.GPU
def generate_text(prompt_wav):
if prompt_wav:
results = asr_pipeline(prompt_wav)
return results['text']
return "No valid input detected."
def main():
with gr.Blocks(title="BreezyVoice 語音合成系統", theme="default") as demo:
gr.Markdown(
"""# BreezyVoice 語音合成系統
#### Runs on Huggingface Zero GPU (A100)
為了加快推理速度,g2pw 注音標註並未被啟動。"""
)
# All content arranged in a single column
with gr.Column():
# Configuration Section
# Grouping prompt audio inputs and auto speech recognition in one block using Markdown
gr.Markdown("### 步驟 1. 音訊樣本輸入 & 音訊樣本文本輸入")
gr.Markdown("選擇 prompt 音訊檔案或錄製 prompt 音訊 (5~15秒),並手動校對自動產生的音訊樣本文本。")
prompt_wav = gr.Audio(
type='filepath',
label='選擇 prompt 音訊檔案(確保取樣率不低於 16khz)或錄製 prompt 音訊'
)
with gr.Blocks():
prompt_text = gr.Textbox(
label="音訊樣本文本輸入(此欄位應與音檔內容完全相同)",
lines=2,
placeholder="音訊樣本文本"
)
prompt_wav.input(
fn=generate_text,
inputs=[prompt_wav],
outputs=prompt_text
)
gr.Examples(
examples=[
["examples/commonvoice-example-1.mp3", "明月幾時有,去問氣象局"],
["examples/commonvoice-example-2.mp3", "雲林縣斗六市與林內鄉交界"],
["examples/commonvoice-example-3.mp3", "法律應保障所有的人獲得相同的發展結果"]
],
inputs=[prompt_wav, prompt_text],
label="範例"
)
# Input Section: Synthesis Text
gr.Markdown("### 步驟 2.合成文本輸入")
tts_text = gr.Textbox(
label="輸入想要合成的文本",
lines=2,
placeholder="請輸入想要合成的文本...",
value="我今天忙了一整天,現在好想睡覺喔 QQ"
)
# Output Section
gr.Markdown("### 步驟 3. 合成音訊")
# Generation button for audio synthesis (triggered manually)
with gr.Accordion("進階設定", open=False):
seed = gr.Number(value=0, label="隨機推理種子")
#seed_button = gr.Button("隨機")
seed_button = gr.Button(value="\U0001F3B2生成隨機推理種子\U0001F3B2")
speed_factor = 1
# speed_factor = gr.Slider(
# minimum=0.25,
# maximum=4,
# step=0.05,
# label="語速",
# value=1.0,
# interactive=True
# )
generate_button = gr.Button("生成音訊")
audio_output = gr.Audio(label="合成音訊")
# Set up callbacks for seed generation and audio synthesis
seed_button.click(fn=generate_seed, inputs=[], outputs=seed)
generate_button.click(
fn=generate_audio,
inputs=[tts_text, prompt_text, prompt_wav, seed],
outputs=audio_output
)
demo.launch()
if __name__ == '__main__':
cosyvoice = CosyVoice('Splend1dchan/BreezyVoice')
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny",
tokenizer="openai/whisper-tiny",
device=0 # Use GPU (if available); set to -1 for CPU
)
sft_spk = cosyvoice.list_avaliable_spks()
prompt_sr, target_sr = 16000, 22050
default_data = np.zeros(target_sr)
main()