import gradio as gr import whisper from transformers import pipeline # Load models model = whisper.load_model("base") summarizer = pipeline("summarization", model="t5-small") # Function to transcribe and summarize def transcribe_and_summarize(audio_file): # Transcription result = model.transcribe(audio_file) transcription = result["text"] # Summarization summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"] return transcription, summary # Gradio Interface inputs = gr.Audio(type="filepath", label="Upload your audio file") outputs = [ gr.Textbox(label="Transcription"), gr.Textbox(label="Summary") ] app = gr.Interface( fn=transcribe_and_summarize, inputs=inputs, outputs=outputs, title="Audio Transcription and Summarization", description="Upload an audio file to get its transcription and a summarized version of the content." ) # Launch the app app.launch()