Add Darija transcription and topic extraction app7
Browse files
app.py
CHANGED
@@ -3,24 +3,20 @@ import torch
|
|
3 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
import librosa
|
6 |
-
import os
|
7 |
-
|
8 |
-
# Set up proxy for internal testing
|
9 |
-
os.environ["HTTP_PROXY"] = "http://meditelproxy.meditel.int:80"
|
10 |
-
os.environ["HTTPS_PROXY"] = "http://meditelproxy.meditel.int:80"
|
11 |
|
12 |
# Load models
|
13 |
# Transcription model for Moroccan Darija
|
14 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
15 |
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
16 |
|
17 |
-
# Summarization model
|
18 |
-
summarizer = pipeline("summarization", model="facebook/
|
19 |
|
20 |
# Topic Classification Model (BERT for example)
|
21 |
topic_model = BertForSequenceClassification.from_pretrained("bert-base-uncased") # Example model
|
22 |
topic_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
23 |
|
|
|
24 |
# Function to resample audio to 16kHz if necessary
|
25 |
def resample_audio(audio_path, target_sr=16000):
|
26 |
audio_input, original_sr = librosa.load(audio_path, sr=None) # Load audio with original sampling rate
|
@@ -61,19 +57,13 @@ def classify_topic(transcription):
|
|
61 |
else:
|
62 |
return "Other"
|
63 |
|
64 |
-
# Function to transcribe, summarize
|
65 |
def transcribe_and_summarize(audio_file):
|
66 |
# Transcription
|
67 |
transcription = transcribe_audio(audio_file)
|
68 |
|
69 |
-
# Summarization
|
70 |
-
summary = summarizer(
|
71 |
-
transcription,
|
72 |
-
max_length=50,
|
73 |
-
min_length=10,
|
74 |
-
do_sample=False,
|
75 |
-
tgt_lang="fr_XX" # Target language set to French
|
76 |
-
)[0]["summary_text"]
|
77 |
|
78 |
# Topic classification
|
79 |
topic = classify_topic(transcription)
|
@@ -84,7 +74,7 @@ def transcribe_and_summarize(audio_file):
|
|
84 |
inputs = gr.Audio(type="filepath", label="Upload your audio file")
|
85 |
outputs = [
|
86 |
gr.Textbox(label="Transcription"),
|
87 |
-
gr.Textbox(label="
|
88 |
gr.Textbox(label="Topic")
|
89 |
]
|
90 |
|
@@ -92,8 +82,8 @@ app = gr.Interface(
|
|
92 |
fn=transcribe_and_summarize,
|
93 |
inputs=inputs,
|
94 |
outputs=outputs,
|
95 |
-
title="Moroccan Darija Audio Transcription,
|
96 |
-
description="Upload an audio file in Moroccan Darija to get its transcription, a summarized version
|
97 |
)
|
98 |
|
99 |
# Launch the app
|
|
|
3 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
import librosa
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Load models
|
8 |
# Transcription model for Moroccan Darija
|
9 |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
10 |
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
11 |
|
12 |
+
# Summarization model
|
13 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
14 |
|
15 |
# Topic Classification Model (BERT for example)
|
16 |
topic_model = BertForSequenceClassification.from_pretrained("bert-base-uncased") # Example model
|
17 |
topic_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
18 |
|
19 |
+
|
20 |
# Function to resample audio to 16kHz if necessary
|
21 |
def resample_audio(audio_path, target_sr=16000):
|
22 |
audio_input, original_sr = librosa.load(audio_path, sr=None) # Load audio with original sampling rate
|
|
|
57 |
else:
|
58 |
return "Other"
|
59 |
|
60 |
+
# Function to transcribe, summarize, and classify topic
|
61 |
def transcribe_and_summarize(audio_file):
|
62 |
# Transcription
|
63 |
transcription = transcribe_audio(audio_file)
|
64 |
|
65 |
+
# Summarization
|
66 |
+
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Topic classification
|
69 |
topic = classify_topic(transcription)
|
|
|
74 |
inputs = gr.Audio(type="filepath", label="Upload your audio file")
|
75 |
outputs = [
|
76 |
gr.Textbox(label="Transcription"),
|
77 |
+
gr.Textbox(label="Summary"),
|
78 |
gr.Textbox(label="Topic")
|
79 |
]
|
80 |
|
|
|
82 |
fn=transcribe_and_summarize,
|
83 |
inputs=inputs,
|
84 |
outputs=outputs,
|
85 |
+
title="Moroccan Darija Audio Transcription, Summarization, and Topic Classification",
|
86 |
+
description="Upload an audio file in Moroccan Darija to get its transcription, a summarized version of the content, and the detected topic."
|
87 |
)
|
88 |
|
89 |
# Launch the app
|