Add transcription and topic extraction app
Browse files- README.md +10 -11
- app.py +30 -4
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
-
|
2 |
-
title: MyIVR
|
3 |
-
emoji: 🏃
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: pink
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.12.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Audio Transcription and Topic Extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
This app allows you to upload an audio file, transcribe it to text, and extract the main topics using machine learning models.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
- Transcription powered by OpenAI's Whisper.
|
7 |
+
- Topic extraction using Hugging Face Transformers.
|
8 |
+
|
9 |
+
## Usage
|
10 |
+
- Upload an audio file.
|
11 |
+
- View the transcription and extracted topics.
|
app.py
CHANGED
@@ -1,7 +1,33 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
# Load models
|
6 |
+
def transcribe_audio(file_path):
|
7 |
+
model = whisper.load_model("base") # Use "tiny", "base", "small", etc.
|
8 |
+
result = model.transcribe(file_path)
|
9 |
+
return result["text"]
|
10 |
|
11 |
+
def extract_topics(text):
|
12 |
+
summarizer = pipeline("summarization")
|
13 |
+
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
14 |
+
return summary[0]["summary_text"]
|
15 |
+
|
16 |
+
def process_audio(file):
|
17 |
+
# Transcribe the audio file
|
18 |
+
transcript = transcribe_audio(file.name)
|
19 |
+
# Extract topics from the transcription
|
20 |
+
topics = extract_topics(transcript)
|
21 |
+
return transcript, topics
|
22 |
+
|
23 |
+
# Gradio interface
|
24 |
+
interface = gr.Interface(
|
25 |
+
fn=process_audio,
|
26 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
27 |
+
outputs=["text", "text"],
|
28 |
+
title="Audio Transcription and Topic Extraction",
|
29 |
+
description="Upload an audio file to get a transcription and extract main topics."
|
30 |
+
)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai-whisper
|
2 |
+
gradio
|
3 |
+
transformers
|
4 |
+
torch # Required by Whisper
|