Add Moroccan Darija extraction app2
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
|
4 |
import soundfile as sf
|
5 |
-
import librosa
|
6 |
|
7 |
# Load models
|
8 |
# Transcription model for Moroccan Darija
|
@@ -10,46 +9,40 @@ processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moro
|
|
10 |
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
11 |
|
12 |
# Summarization model
|
13 |
-
summarizer = pipeline("summarization", model="
|
14 |
|
15 |
-
# Function to
|
16 |
-
def resample_audio(audio_path, target_sr=16000):
|
17 |
-
audio_input, original_sr = librosa.load(audio_path, sr=None) # Load audio with original sampling rate
|
18 |
-
if original_sr != target_sr:
|
19 |
-
audio_input = librosa.resample(audio_input, orig_sr=original_sr, target_sr=target_sr) # Resample to 16kHz
|
20 |
-
return audio_input, target_sr
|
21 |
-
|
22 |
-
# Function to transcribe audio using Wav2Vec2
|
23 |
def transcribe_audio(audio_path):
|
24 |
-
|
25 |
-
|
|
|
26 |
inputs = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt", padding=True)
|
27 |
-
|
28 |
-
# Get predictions
|
29 |
with torch.no_grad():
|
30 |
logits = transcription_model(**inputs).logits
|
31 |
-
|
32 |
-
# Decode predictions
|
33 |
predicted_ids = torch.argmax(logits, dim=-1)
|
34 |
transcription = processor.batch_decode(predicted_ids)[0]
|
35 |
return transcription
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Function to transcribe and summarize
|
38 |
-
def transcribe_and_summarize(audio_file):
|
39 |
-
# Transcription
|
40 |
transcription = transcribe_audio(audio_file)
|
41 |
-
|
42 |
-
|
43 |
-
if len(transcription.split()) < 10: # Check if the transcription is too short for summarization
|
44 |
-
summary = "Transcription is too short for summarization."
|
45 |
-
else:
|
46 |
-
# Summarization
|
47 |
-
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
48 |
-
|
49 |
return transcription, summary
|
50 |
|
51 |
# Gradio Interface
|
52 |
-
inputs =
|
|
|
|
|
|
|
53 |
outputs = [
|
54 |
gr.Textbox(label="Transcription"),
|
55 |
gr.Textbox(label="Summary")
|
@@ -60,7 +53,10 @@ app = gr.Interface(
|
|
60 |
inputs=inputs,
|
61 |
outputs=outputs,
|
62 |
title="Moroccan Darija Audio Transcription and Summarization",
|
63 |
-
description=
|
|
|
|
|
|
|
64 |
)
|
65 |
|
66 |
# Launch the app
|
|
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
|
4 |
import soundfile as sf
|
|
|
5 |
|
6 |
# Load models
|
7 |
# Transcription model for Moroccan Darija
|
|
|
9 |
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
|
10 |
|
11 |
# Summarization model
|
12 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
13 |
|
14 |
+
# Function to transcribe audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def transcribe_audio(audio_path):
|
16 |
+
audio_input, sample_rate = sf.read(audio_path)
|
17 |
+
if sample_rate != 16000:
|
18 |
+
raise ValueError("Audio must be sampled at 16kHz.")
|
19 |
inputs = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt", padding=True)
|
|
|
|
|
20 |
with torch.no_grad():
|
21 |
logits = transcription_model(**inputs).logits
|
|
|
|
|
22 |
predicted_ids = torch.argmax(logits, dim=-1)
|
23 |
transcription = processor.batch_decode(predicted_ids)[0]
|
24 |
return transcription
|
25 |
|
26 |
+
# Function to filter text by keywords
|
27 |
+
def filter_text_by_keywords(text, keywords):
|
28 |
+
keyword_list = keywords.split(",")
|
29 |
+
filtered_sentences = [
|
30 |
+
sentence for sentence in text.split(". ") if any(keyword.strip().lower() in sentence.lower() for keyword in keyword_list)
|
31 |
+
]
|
32 |
+
return ". ".join(filtered_sentences) if filtered_sentences else text
|
33 |
+
|
34 |
# Function to transcribe and summarize
|
35 |
+
def transcribe_and_summarize(audio_file, keywords):
|
|
|
36 |
transcription = transcribe_audio(audio_file)
|
37 |
+
filtered_text = filter_text_by_keywords(transcription, keywords)
|
38 |
+
summary = summarizer(filtered_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
return transcription, summary
|
40 |
|
41 |
# Gradio Interface
|
42 |
+
inputs = [
|
43 |
+
gr.Audio(type="filepath", label="Upload your audio file"),
|
44 |
+
gr.Textbox(label="Enter Keywords (comma-separated)", placeholder="e.g., customer, service, retention")
|
45 |
+
]
|
46 |
outputs = [
|
47 |
gr.Textbox(label="Transcription"),
|
48 |
gr.Textbox(label="Summary")
|
|
|
53 |
inputs=inputs,
|
54 |
outputs=outputs,
|
55 |
title="Moroccan Darija Audio Transcription and Summarization",
|
56 |
+
description=(
|
57 |
+
"Upload an audio file in Moroccan Darija to get its transcription and a summarized version. "
|
58 |
+
"Specify relevant keywords (comma-separated) to filter the transcription before summarization."
|
59 |
+
)
|
60 |
)
|
61 |
|
62 |
# Launch the app
|