MyIVR / app.py
JabriA's picture
Add Darija transcription and topic extraction app3
3785854
raw
history blame
2.24 kB
import gradio as gr
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
import soundfile as sf
# Load models
# Transcription model for Moroccan Darija
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
# Summarization model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to transcribe audio
def transcribe_audio(audio_path):
audio_input, sample_rate = sf.read(audio_path)
if sample_rate != 16000:
raise ValueError("Audio must be sampled at 16kHz.")
inputs = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt", padding=True)
with torch.no_grad():
logits = transcription_model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription
# Function to analyze topics from summary
def analyze_topics(summary):
if "customer service" in summary.lower():
return "Customer Service"
elif "retention" in summary.lower():
return "Retention"
else:
return "Unknown"
# Function to transcribe, summarize, and analyze topics
def transcribe_summarize_analyze(audio_file):
# Transcription
transcription = transcribe_audio(audio_file)
# Summarization
summary = summarizer(transcription, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
# Topic Analysis
topic = analyze_topics(summary)
return transcription, summary, topic
# Gradio Interface
inputs = gr.Audio(type="filepath", label="Upload your audio file")
outputs = [
gr.Textbox(label="Transcription"),
gr.Textbox(label="Summary"),
gr.Textbox(label="Topic")
]
app = gr.Interface(
fn=transcribe_summarize_analyze,
inputs=inputs,
outputs=outputs,
title="Moroccan Darija Audio Analysis",
description=(
"Upload an audio file in Moroccan Darija to get its transcription, a summarized version, "
"and the detected topic (Customer Service or Retention)."
)
)
# Launch the app
if __name__ == "__main__":
app.launch()