File size: 11,678 Bytes
e061ff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import uuid
from dotenv import load_dotenv
from utils.chat_prompts import (
NON_RAG_PROMPT,
RAG_CHAT_PROMPT_ENG,
RAG_CHAT_PROMPT_TH,
RAG_CHAT_PROMPT_KOREAN,
QUERY_REWRITING_PROMPT_OBJ
)
from get_retriever_2 import final_retrievers
from input_classifier import classify_input_type, detect_language
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langfuse.callback import CallbackHandler
from langfuse.decorators import observe
# Load environment variables from .env file
load_dotenv()
class Chat:
def __init__(self, model_name_llm="jai-chat-1-3-2", temperature=0):
self.session_id = str(uuid.uuid4())[:8]
self.model_name_llm = model_name_llm
self.langfuse_handler = CallbackHandler(
secret_key=os.environ['LANGFUSE_SECRET_KEY'],
public_key=os.environ['LANGFUSE_PUBLIC_KEY'],
host="https://us.cloud.langfuse.com",
session_id=self.session_id
)
# --- LLM Initialization ---
if model_name_llm == "jai-chat-1-3-2":
self.llm_main = ChatOpenAI(
model=model_name_llm,
api_key=os.getenv("JAI_API_KEY"),
base_url=os.getenv("CHAT_BASE_URL"),
temperature=temperature,
max_tokens=2048,
max_retries=2,
seed=13
)
self.llm_rewriter = self.llm_main
elif model_name_llm == "gemini-2.0-flash":
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("GOOGLE_API_KEY (for Gemini) not found in environment variables.")
common_gemini_config = {
"google_api_key": GEMINI_API_KEY,
"temperature": temperature,
"max_output_tokens": 2048,
"convert_system_message_to_human": True,
}
self.llm_main = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
**common_gemini_config
)
self.llm_rewriter = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
**common_gemini_config
)
else:
raise ValueError(f"Unsupported LLM model '{model_name_llm}'.")
self.history = [] # Store Langchain Message objects
def append_history(self, message: [HumanMessage, AIMessage]):
self.history.append(message)
def get_formatted_history_for_llm(self, n_turns: int = 3) -> list:
"""Returns the last n_turns of history as a list of Message objects."""
return self.history[-(n_turns * 2):]
def get_stringified_history_for_rewrite(self, n_turns: int = 2) -> str:
"""
Formats the last n_turns of history (excluding the current un-added user input)
as a string for the query rewriter prompt.
"""
history_to_format = self.history[-(n_turns * 2):]
if not history_to_format:
return "No history available."
history_str_parts = []
for msg in history_to_format:
role = "User" if isinstance(msg, HumanMessage) else "AI"
history_str_parts.append(f"{role}: {msg.content}")
return "\n".join(history_str_parts)
@observe()
def classify_input(self, user_input: str) -> str:
history_content_list = [msg.content for msg in self.history]
return classify_input_type(user_input, history=history_content_list)
def format_docs(self, docs: list) -> str:
return "\n\n".join(doc.page_content for doc in docs)
@observe()
def get_retriever_and_prompt(self, lang_code: str):
"""
Returns the appropriate retriever and RAG prompt based on the language.
Handles potential errors if retriever or prompt is not found.
"""
retriever = final_retrievers.get(lang_code)
if lang_code == "Thai":
prompt_template = RAG_CHAT_PROMPT_TH
elif lang_code == "Korean":
prompt_template = RAG_CHAT_PROMPT_KOREAN
elif lang_code == "English":
prompt_template = RAG_CHAT_PROMPT_ENG
else:
print(f"Warning: Unsupported language '{lang_code}' for RAG. Defaulting to English.")
retriever = final_retrievers.get('English')
prompt_template = RAG_CHAT_PROMPT_ENG
if not retriever:
available_langs = list(final_retrievers.keys())
if available_langs:
fallback_lang = available_langs[0]
retriever = final_retrievers[fallback_lang]
print(f"Warning: No retriever for '{lang_code}' or 'English'. Using first available: '{fallback_lang}'.")
if fallback_lang == "Thai": prompt_template = RAG_CHAT_PROMPT_TH
elif fallback_lang == "Korean": prompt_template = RAG_CHAT_PROMPT_KOREAN
else: prompt_template = RAG_CHAT_PROMPT_ENG
else:
raise ValueError("CRITICAL: No retrievers configured at all.")
if not prompt_template:
raise ValueError(f"CRITICAL: No RAG prompt template found for language '{lang_code}' or effective fallback.")
return retriever, prompt_template
@observe()
def call_non_rag(self, user_input: str, input_lang: str) -> str:
try:
if hasattr(NON_RAG_PROMPT, "format_messages"):
prompt_messages = NON_RAG_PROMPT.format(user_input=user_input, input_lang=input_lang)
elif isinstance(NON_RAG_PROMPT, str):
formatted_prompt_str = NON_RAG_PROMPT.format(user_input=user_input, input_lang=input_lang)
prompt_messages = [HumanMessage(content=formatted_prompt_str)]
else:
raise TypeError("NON_RAG_PROMPT is of an unsupported type.")
response = self.llm_main.invoke(prompt_messages, config={"callbacks": [self.langfuse_handler]})
return response.content.strip()
except Exception as e:
print(f"Error during Non-RAG LLM call: {e}")
return "Sorry, I had trouble processing your general request."
@observe()
def _observe_detect_language(self, user_input: str) -> str:
"""Wraps the detect_language call for Langfuse observation."""
return detect_language(user_input)
# If the main chat method itself should be a trace, uncomment @observe() below
# @observe()
def chat(self, user_input: str) -> str:
# print(f"\n\n-- USER INPUT: {user_input} --")
try:
# MODIFIED: Call the new observed method
input_lang_detected = self._observe_detect_language(user_input)
# print(f"Language detected: {input_lang_detected}")
except Exception as e:
print(f"Error detecting language: {e}. Defaulting to Thai.")
input_lang_detected = "Thai"
history_before_current_input = self.history[:]
self.append_history(HumanMessage(content=user_input))
try:
input_type = self.classify_input(user_input)
except Exception as e:
print(f"Error classifying input type: {e}. Defaulting to Non-RAG.")
input_type = "Non-RAG"
ai_response_content = ""
if input_type == "RAG":
# print("[RAG FLOW]")
ai_response_content = self.call_rag_v2(user_input, input_lang_detected, history_before_current_input)
else:
# print(f"[{input_type} FLOW (Treated as NON-RAG)]")
ai_response_content = self.call_non_rag(user_input, input_lang_detected)
self.append_history(AIMessage(content=ai_response_content))
# print(f"AI:::: {ai_response_content}")
return ai_response_content
@observe()
def call_rag_v2(self, user_input: str, input_lang: str, history_for_rewrite: list) -> str:
try:
retriever, selected_rag_prompt = self.get_retriever_and_prompt(input_lang)
except ValueError as e:
print(f"Error in RAG setup: {e}")
return f"Sorry, I encountered a configuration issue for {input_lang} RAG. Please contact support."
# --- Query Rewriting Step ---
# MODIFIED: _rewrite_query_if_needed_v2 is now observed via its own decorator
query_for_retriever = self._rewrite_query_if_needed_v2(user_input, history_for_rewrite)
# print(f"Retrieving documents for query: '{query_for_retriever}' (lang: {input_lang})")
try:
context_docs = retriever.invoke(query_for_retriever)
except Exception as e:
print(f"Error during document retrieval: {e}")
return "Sorry, I had trouble finding relevant information for your query."
# print(f"Retrieved {len(context_docs)} documents.")
context_str = self.format_docs(context_docs)
# print(f"\n----> CONTEXT DOCS (from call_rag_v2)\n{context_str}")
history_for_llm_prompt = self.get_formatted_history_for_llm(n_turns=3)
rag_input_data = {
"question": user_input,
"context": context_str,
"history": history_for_llm_prompt
}
try:
prompt_messages = selected_rag_prompt.format_messages(**rag_input_data)
response = self.llm_main.invoke(prompt_messages, config={"callbacks": [self.langfuse_handler]})
return response.content.strip()
except Exception as e:
print(f"Error during RAG LLM call: {e}")
return "Sorry, I encountered an error while generating the response."
@observe()
def _rewrite_query_if_needed_v2(self, user_input: str, history_list: list) -> str:
if not history_list:
# self.langfuse_handler.trace(name="rewrite_query_skipped_no_history", input={"user_input": user_input}, output=user_input)
return user_input
history_str_parts = []
for msg in history_list[-(2*2):]:
role = "User" if isinstance(msg, HumanMessage) else "AI"
history_str_parts.append(f"{role}: {msg.content}")
chat_history_str = "\n".join(history_str_parts) if history_str_parts else "No relevant history."
try:
rewrite_prompt_messages = QUERY_REWRITING_PROMPT_OBJ.format_messages(
chat_history=chat_history_str,
question=user_input
)
response = self.llm_rewriter.invoke(rewrite_prompt_messages, config={"callbacks": [self.langfuse_handler]})
rewritten_query = response.content.strip()
if rewritten_query and len(rewritten_query) < (len(user_input) + 250) and len(rewritten_query) > 0:
# print(f"Original query: '{user_input}', Rewritten query for retriever: '{rewritten_query}'")
return rewritten_query
else:
print(f"Rewritten query validation failed. Using original: '{user_input}'")
# You could add a Langfuse event here if desired
# self.langfuse_handler.score(name="rewrite_validation_failed", value=0, comment="Rewritten query failed validation")
return user_input
except Exception as e:
print(f"Error during query rewriting: {e}. Using original query.")
# self.langfuse_handler.score(name="rewrite_error", value=0, comment=str(e))
return user_input |