File size: 11,150 Bytes
8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd 1682215 8e5a9dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os, re
# os.environ["OTEL_TRACES_EXPORTER"] = "none"
# os.environ["OTEL_SDK_DISABLED"] = "true"
os.environ["OTEL_TRACES_EXPORTER"] = "console"
import uuid
from dotenv import load_dotenv
from utils.chat_prompts import RAG_CHAT_PROMPT, NON_RAG_PROMPT
from utils.reranker import RerankRetriever
from utils.input_classifier import classify_input_type
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from pymongo import MongoClient
from langfuse.langchain import CallbackHandler
from langfuse import observe
load_dotenv()
# MongoDB configurations
mongo_username = os.environ.get('MONGO_USERNAME')
mongo_password = os.environ.get('MONGO_PASSWORD')
mongo_database = os.environ.get('MONGO_DATABASE')
mongo_connection_str = os.environ.get('MONGO_CONNECTION_STRING')
mongo_collection_name = os.environ.get('MONGO_COLLECTION')
class ChatLaborLaw:
def __init__(self, model_name_llm="jai-chat-1-3-2", temperature=0):
self.session_id = str(uuid.uuid4())[:8]
# ----- Langfuse -----
self.langfuse_handler = CallbackHandler(
)
self.history = [] # Store Langchain Message objects
self.model_name_llm = model_name_llm
self.retriever = RerankRetriever()
self.client = MongoClient(mongo_connection_str)
self.db = self.client[mongo_database]
self.collection = self.db[mongo_collection_name]
# --- LLM Initialization ---
if model_name_llm == "jai-chat-1-3-2":
self.llm_main = ChatOpenAI(
model=model_name_llm,
api_key=os.getenv("JAI_API_KEY"),
base_url=os.getenv("CHAT_BASE_URL"),
temperature=temperature,
max_tokens=2048,
max_retries=2,
seed=13
)
elif model_name_llm == "gemini-2.0-flash":
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("GOOGLE_API_KEY (for Gemini) not found in environment variables.")
common_gemini_config = {
"google_api_key": GEMINI_API_KEY,
"temperature": temperature,
"max_output_tokens": 2048,
"convert_system_message_to_human": True,
}
self.llm_main = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
**common_gemini_config)
else:
raise ValueError(f"Unsupported LLM model '{model_name_llm}'.")
self.history = [] # Store Langchain Message objects
# ----- Context Retrieval -----
@observe(name='main_context')
def get_main_context(self, user_query, **kwargs):
# note ต้อง get ทุกครั้งไหม กรณีอะไรที่จะเปลี่ยน
# note ต้องมี classifier มาเพื่อตัดสิน filters -- * ถ้ามีระบุเวลา ก็ต้องไปคำนวน แล้วเอาจาก official_version แทน
compression_retriever = self.retriever.get_compression_retriever(**kwargs)
main_comtext_docs = compression_retriever.invoke(user_query)
return main_comtext_docs
@observe(name='ref_context')
def get_ref_context(self, main_context_docs):
"""
ค้นหา Context ของมาตราที่ถูกอ้างอิงจาก MongoDB
โดยใช้ $in operator เพื่อประสิทธิภาพสูงสุด
"""
all_reference_docs = []
for context in main_context_docs:
references_list = context.metadata.get('references', [])
if not isinstance(references_list, list) or not references_list:
continue # ข้ามไป context ถัดไปถ้าไม่มีอ้างอิง
ref_numbers = [
ref_str.replace("มาตรา", "").strip()
for ref_str in references_list
]
# query $in : มาตรานั้นๆ
mongo_query = {
"law_type": "summary",
"section_number": {"$in": ref_numbers}
}
projection = {
"_id": 1,
"text": 1,
"document_type": 1,
"law_type": 1,
"law_name": 1,
"chapter":1,
# "publication_date": 1,
# "effective_date": 1,
# "publication_date_utc": 1,
# "effective_date_utc": 1,
# "royal_gazette_volume": 1,
# "royal_gazette_no": 1,
# "royal_gazette_page": 1,
"chunk_type": 1,
"section_number": 1
}
results = self.collection.find(mongo_query, projection)
all_reference_docs.extend(list(results))
# ลบอันที่ซ้ำ
ref_docs_by_id = {}
for doc in all_reference_docs:
ref_docs_by_id[doc["_id"]] = doc # ถ้ามี _id ซ้ำกัน จะ overwrite
return list(ref_docs_by_id.values())
# handle main context
# ต้องเอา law_name, section_number (มาตรา), publication_date(ถ้ามี), effective_date(ถ้ามี)
def format_main_context(self, list_of_documents):
"""
input: list of Document (Langchain)
output: text --> to forward to prompt
"""
formatted_docs = []
for i, doc in enumerate(list_of_documents):
law_name = doc.metadata.get('law_name', '-')
chapter = doc.metadata.get('chapter', '-')
section_number = doc.metadata.get('section_number', '-')
publication_date = doc.metadata.get('publication_date', '-') # ไม่ได้มีทุกอัน
effective_date = doc.metadata.get('effective_date', '-') # ไม่ได้มีทุกอัน
content = doc.page_content
formatted = "\n".join([
f"Doc{i}",
f"{law_name}",
f"{chapter}"
f"มาตรา\t{section_number}",
content,
f"ประกาศ\t{publication_date}",
f"เริ่มใช้\t{effective_date}"
])
formatted_docs.append(formatted)
return "\n\n".join(formatted_docs)
def format_ref_context(self, list_of_docs):
formatted_ref_docs = []
for i, doc in enumerate(list_of_docs):
law_name = doc.get('law_name', '-')
chapter = doc.get('chapter', '-')
section_number = doc.get('section_number', '-')
content = doc.get('text', '-')
formatted = "\n".join([
f"{law_name}",
f"{chapter}"
f"มาตรา\t{section_number}",
content,
])
formatted_ref_docs.append(formatted)
return "\n\n".join(formatted_ref_docs)
# ----- Chat! -----
# History
def append_history(self, message: [HumanMessage, AIMessage]):
self.history.append(message)
def get_formatted_history_for_llm(self, n_turns: int = 3) -> list:
"""Returns the last n_turns of history as a list of Message objects."""
return self.history[-(n_turns * 2):]
# Classify
@observe(name='classify_input_type')
def classify_input(self, user_input: str) -> str:
history_content_list = [msg.content for msg in self.history] # เอาแค่ข้อความมา
return classify_input_type(user_input, history=history_content_list)
# Chat
@observe(name="chat_flow")
async def chat(self, user_input: str) -> str:
history_before_current_input = self.history[:]
self.append_history(HumanMessage(content=user_input))
try:
input_type = self.classify_input(user_input)
except Exception as e:
print(f"Error classifying input type: {e}. Defaulting to Non-RAG.")
input_type = "Non-RAG"
ai_response_content = ""
if input_type == "RAG":
# print("[RAG FLOW]")
ai_response_content = await self.call_rag(user_input) #, history_before_current_input)
else:
# print(f"[{input_type} FLOW (Treated as NON-RAG)]")
ai_response_content = await self.call_non_rag(user_input)
self.append_history(AIMessage(content=ai_response_content))
# print(f"AI:::: {ai_response_content}")
# print(input_type)
return ai_response_content
@observe(name='rag_flow')
async def call_rag(self, user_input: str) -> str:
# main context
context_docs = self.get_main_context(user_input,
law_type="summary",
chunk_type="section")
# print(context_docs)
main_context_str = self.format_main_context(context_docs)
# print(main_context_str)
# ref context
ref_context_docs = self.get_ref_context(context_docs)
try:
ref_context_str = self.format_ref_context(ref_context_docs)
except:
ref_context_str = "-"
history_for_llm_prompt = self.get_formatted_history_for_llm(n_turns=3)
rag_input_data = {
"question": user_input,
"main_context": main_context_str,
"ref_context": ref_context_str,
"history": history_for_llm_prompt
}
try:
prompt_messages = RAG_CHAT_PROMPT.format_messages(**rag_input_data)
response = await self.llm_main.ainvoke(prompt_messages, config={"callbacks": [self.langfuse_handler]})
responsestring = response.content
clean_response = re.sub(r"<[^>]+>", "", responsestring)
clean_response = re.sub(r"#+", "", clean_response)
clean_response = clean_response.strip()
# return response.content.strip()
return clean_response
except Exception as e:
print(f"Error during RAG LLM call: {e}")
return "Sorry, I encountered an error while generating the response."
@observe(name='non_rag_flow')
async def call_non_rag(self, user_input: str) -> str:
prompt_messages = NON_RAG_PROMPT.format(user_input=user_input)
response = await self.llm_main.ainvoke(prompt_messages, config={"callbacks": [self.langfuse_handler]})
# ป้องกัน content เป็น None
if not response or not response.content:
return "ขออภัย ระบบไม่สามารถตอบคำถามได้ในขณะนี้"
return response.content.strip() |