File size: 14,074 Bytes
8e5a9dd
 
 
2991e79
8e5a9dd
 
 
474fb03
 
 
 
 
8e5a9dd
474fb03
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
 
 
8e5a9dd
474fb03
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5a9dd
474fb03
 
 
8e5a9dd
474fb03
 
8e5a9dd
474fb03
 
 
8e5a9dd
 
 
 
474fb03
 
 
 
 
8e5a9dd
474fb03
 
 
 
 
 
8e5a9dd
474fb03
8e5a9dd
474fb03
 
 
8e5a9dd
 
474fb03
 
 
8e5a9dd
 
 
 
474fb03
 
8e5a9dd
474fb03
 
 
 
 
8e5a9dd
 
474fb03
 
 
8e5a9dd
 
 
 
 
474fb03
8e5a9dd
 
474fb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
os.environ["OTEL_TRACES_EXPORTER"] = "none"

import gradio as gr
import uuid
from utils.chat import ChatLaborLaw

# ==============================================================================
# 1. GLOBAL INITIALIZATION (ทำครั้งเดียวตอนแอปเริ่มทำงาน)
# ==============================================================================
# --- Langfuse Handler ---
LANGFUSE_HANDLER = CallbackHandler()

# --- LLM Initialization ---
# (ปรับแก้ส่วนนี้เพื่อเลือกว่าจะใช้โมเดลไหนเป็น default)
MODEL_NAME_LLM = "jai-chat-1-3-2" 
TEMPERATURE = 0

if MODEL_NAME_LLM == "jai-chat-1-3-2":
    LLM_MAIN = ChatOpenAI(
        model=MODEL_NAME_LLM,
        api_key=os.getenv("JAI_API_KEY"),
        base_url=os.getenv("CHAT_BASE_URL"),
        temperature=TEMPERATURE,
        max_tokens=2048,
        max_retries=2,
        seed=13
    )
elif MODEL_NAME_LLM == "gemini-2.0-flash":
    LLM_MAIN = ChatGoogleGenerativeAI(
        model="gemini-1.5-flash", 
        google_api_key=os.getenv("GOOGLE_API_KEY"),
        temperature=TEMPERATURE,
        max_output_tokens=2048, 
        convert_system_message_to_human=True, 
    )
else:
    raise ValueError(f"Unsupported LLM model '{MODEL_NAME_LLM}'.")

# --- Database and Retriever Initialization ---
MONGO_CONNECTION_STR = os.getenv('MONGO_CONNECTION_STRING')
MONGO_DATABASE = os.getenv('MONGO_DATABASE')
MONGO_COLLECTION = os.getenv('MONGO_COLLECTION')

MONGO_CLIENT = MongoClient(MONGO_CONNECTION_STR)
DB = MONGO_CLIENT[MONGO_DATABASE]
MONGO_COLLECTION_INSTANCE = DB[MONGO_COLLECTION]
RETRIEVER = RerankRetriever()

print("Global objects initialized successfully.")

# ==============================================================================
# 2. HELPER FUNCTIONS (แปลงมาจากเมธอดใน Class)
# ==============================================================================

def format_main_context(list_of_documents):
    formatted_docs = []
    for i, doc in enumerate(list_of_documents):
        metadata = doc.metadata
        formatted = f"Doc{i}\n{metadata.get('law_name', '-')}\nมาตรา\t{metadata.get('section_number', '-')}\n{doc.page_content}\nประกาศ\t{metadata.get('publication_date', '-')}\nเริ่มใช้\t{metadata.get('effective_date', '-')}"
        formatted_docs.append(formatted)
    return "\n\n".join(formatted_docs)

def format_ref_context(list_of_docs):
    formatted_ref_docs = []
    for i, doc in enumerate(list_of_docs):
        formatted = f"{doc.get('law_name', '-')}\nมาตรา\t{doc.get('section_number', '-')}\n{doc.get('text', '-')}"
        formatted_ref_docs.append(formatted)
    return "\n\n".join(formatted_ref_docs)

def get_main_context(user_query, **kwargs):
    compression_retriever = RETRIEVER.get_compression_retriever(**kwargs)
    return compression_retriever.invoke(user_query)

def get_ref_context(main_context_docs):
    all_reference_ids = set()
    for context in main_context_docs:
        references_list = context.metadata.get('references', [])
        if isinstance(references_list, list):
            for ref_str in references_list:
                all_reference_ids.add(ref_str.replace("มาตรา", "").strip())
    
    if not all_reference_ids:
        return []

    mongo_query = {"law_type": "summary", "section_number": {"$in": list(all_reference_ids)}}
    projection = {"text": 1, "law_name": 1, "section_number": 1}
    return list(MONGO_COLLECTION_INSTANCE.find(mongo_query, projection))

# ==============================================================================
# 3. CORE LOGIC FUNCTIONS (RAG / Non-RAG)
# ==============================================================================

async def call_rag(user_input: str, langchain_history: list) -> str:
    context_docs = get_main_context(user_input, law_type="summary")
    main_context_str = format_main_context(context_docs)

    ref_context_docs = get_ref_context(context_docs)
    ref_context_str = format_ref_context(ref_context_docs) if ref_context_docs else "-"

    rag_input_data = {
        "question": user_input,
        "main_context": main_context_str,
        "ref_context": ref_context_str,
        "history": langchain_history
    }
    
    try:
        prompt_messages = RAG_CHAT_PROMPT.format_messages(**rag_input_data)
        response = await LLM_MAIN.ainvoke(prompt_messages, config={"callbacks": [LANGFUSE_HANDLER]})
        clean_response = re.sub(r"<[^>]+>|#+", "", response.content).strip()
        return clean_response
    except Exception as e:
        print(f"Error during RAG LLM call: {e}")
        return "ขออภัย ระบบขัดข้องขณะประมวลผลคำตอบ"

async def call_non_rag(user_input: str) -> str:
    prompt_messages = NON_RAG_PROMPT.format(user_input=user_input)
    response = await LLM_MAIN.ainvoke(prompt_messages, config={"callbacks": [LANGFUSE_HANDLER]})
    return response.content.strip() if response and response.content else "ขออภัย ระบบไม่สามารถตอบคำถามได้ในขณะนี้"

# ==============================================================================
# 4. GRADIO EVENT HANDLERS
# ==============================================================================

def initialize_session():
    """รีเซ็ต State ทั้งหมดสำหรับ Session ใหม่"""
    session_id = str(uuid.uuid4())[:8]
    return "", session_id, [], []  # user_input, session_id, ui_history, langchain_history

async def chat_orchestrator(prompt: str, ui_history: list, langchain_history: list):
    """
    ฟังก์ชันหลักที่จัดการการสนทนาทั้งหมด
    """
    if not prompt.strip():
        return ui_history, langchain_history, ""

    # 1. อัปเดต Langchain History ด้วยข้อความใหม่
    langchain_history.append(HumanMessage(content=prompt))

    # 2. จำแนกประเภทของ Input
    try:
        history_content_list = [msg.content for msg in langchain_history]
        input_type = classify_input_type(prompt, history=history_content_list)
    except Exception as e:
        print(f"Error classifying input type: {e}. Defaulting to Non-RAG.")
        input_type = "Non-RAG"

    # 3. เรียกใช้ Flow ที่เหมาะสม
    if input_type == "RAG":
        ai_response = await call_rag(prompt, langchain_history)
    else:
        ai_response = await call_non_rag(prompt)

    # 4. อัปเดต History ทั้งสองรูปแบบ
    langchain_history.append(AIMessage(content=ai_response))
    ui_history.append((prompt, ai_response))
    
    # 5. ส่งค่ากลับไปอัปเดต UI และ State
    return ui_history, langchain_history, "" # ui_history, langchain_history, user_input (ให้เป็นค่าว่าง)

def send_feedback(feedback: str, history: list, session_id: str):
    """บันทึก Feedback"""
    if not feedback.strip(): return ""
    os.makedirs("feedback", exist_ok=True)
    filename = f"feedback/feedback_{session_id}.txt"
    with open(filename, "a", encoding="utf-8") as f:
        f.write(f"=== Feedback Received ===\nSession ID: {session_id}\nFeedback: {feedback}\nChat History:\n")
        for user_msg, assistant_msg in history:
            f.write(f"User: {user_msg}\nAssistant: {assistant_msg}\n")
        f.write("\n--------------------------\n\n")
    gr.Info("ขอบคุณสำหรับข้อเสนอแนะ!")
    return ""

# ==============================================================================
# 5. GRADIO UI DEFINITION
# ==============================================================================

with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:
    gr.Markdown("# สอบถามเรื่องกฎหมายแรงงาน")

    # --- States ---
    # session_id_state: เก็บ ID ของ session ปัจจุบัน
    # langchain_history_state: เก็บประวัติการสนทนาในรูปแบบ Langchain Message (HumanMessage, AIMessage)
    session_id_state = gr.State()
    langchain_history_state = gr.State([])

    # --- UI Components ---
    chatbot_interface = gr.Chatbot(label="ประวัติการสนทนา", height=550, bubble_styling=False, show_copy_button=True)
    user_input = gr.Textbox(placeholder="พิมพ์คำถามของคุณที่นี่...", label="คำถาม", lines=2)
    with gr.Row():
        submit_button = gr.Button("ส่ง", variant="primary", scale=4)
        clear_button = gr.Button("เริ่มการสนทนาใหม่", scale=1)

    # --- Event Wiring ---
    submit_button.click(
        fn=chat_orchestrator,
        inputs=[user_input, chatbot_interface, langchain_history_state],
        outputs=[chatbot_interface, langchain_history_state, user_input]
    )
    user_input.submit(
        fn=chat_orchestrator,
        inputs=[user_input, chatbot_interface, langchain_history_state],
        outputs=[chatbot_interface, langchain_history_state, user_input]
    )
    clear_button.click(
        fn=initialize_session,
        inputs=[],
        outputs=[user_input, session_id_state, chatbot_interface, langchain_history_state],
        queue=False
    )
    
    with gr.Accordion("ส่งข้อเสนอแนะ (Feedback)", open=False):
        feedback_input = gr.Textbox(placeholder="ความคิดเห็นของคุณมีความสำคัญต่อการพัฒนาของเรา...", label="Feedback", lines=2, scale=4)
        send_feedback_button = gr.Button("ส่ง Feedback")
    
    send_feedback_button.click(
        fn=send_feedback,
        inputs=[feedback_input, chatbot_interface, session_id_state],
        outputs=[feedback_input],
        queue=False
    )

    demo.load(
        fn=initialize_session,
        inputs=[],
        outputs=[user_input, session_id_state, chatbot_interface, langchain_history_state]
    )

demo.queue().launch()


# # Function to initialize a new session and create chatbot instance for that session
# async def initialize_session():
#     session_id = str(uuid.uuid4())[:8]
#     chatbot = ChatLaborLaw()
#     # chatbot = Chat("gemini-2.0-flash")
#     history = []
#     return "", session_id, chatbot, history


# # Function to handle user input and chatbot response
# async def chat_function(prompt, history, session_id, chatbot):
#     if chatbot is None:
#         return history, "", session_id, chatbot # Skip if chatbot not ready
    
#     # Append the user's input to the message history
#     history.append({"role": "user", "content": prompt})

#     # Get the response from the chatbot
#     response = await chatbot.chat(prompt)  # ใช้ await ได้แล้ว
    
#     # Append the assistant's response to the message history
#     history.append({"role": "assistant", "content": response})
    
#     return history, "", session_id, chatbot


# # Function to save feedback with chat history
# async def send_feedback(feedback, history, session_id, chatbot):
#     os.makedirs("app/feedback", exist_ok=True)
#     filename = f"app/feedback/feedback_{session_id}.txt"
#     with open(filename, "a", encoding="utf-8") as f:
#         f.write("=== Feedback Received ===\n")
#         f.write(f"Session ID: {session_id}\n")
#         f.write(f"Feedback: {feedback}\n")
#         f.write("Chat History:\n")
#         for msg in history:
#             f.write(f"{msg['role']}: {msg['content']}\n")
#         f.write("\n--------------------------\n\n")
#     return "" # Clear feedback input


# # Create the Gradio interface
# with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:
#     gr.Markdown("# สอบถามเรื่องกฎหมายแรงงาน")

#     # Initialize State
#     session_state = gr.State()
#     chatbot_instance = gr.State()
#     chatbot_history = gr.State([])

#     # Chat UI
#     chatbot_interface = gr.Chatbot(type="messages", label="Chat History")
#     user_input = gr.Textbox(placeholder="Type your message here...", elem_id="user_input", lines=1)

#     submit_button = gr.Button("Send")
#     clear_button = gr.Button("Delete Chat History")

#     # Submit actions
#     submit_button.click(
#         fn=chat_function,
#         inputs=[user_input, chatbot_history, session_state, chatbot_instance],
#         outputs=[chatbot_interface, user_input, session_state, chatbot_instance]
#     )

#     user_input.submit(
#         fn=chat_function,
#         inputs=[user_input, chatbot_history, session_state, chatbot_instance],
#         outputs=[chatbot_interface, user_input, session_state, chatbot_instance]
#     )

#     # # Clear history
#     # clear_button.click(lambda: [], outputs=chatbot_interface)
#     clear_button.click(
#         fn=initialize_session,
#         inputs=[],
#         outputs=[user_input, session_state, chatbot_instance, chatbot_history]
#     ).then(
#         fn=lambda: gr.update(value=[]),
#         inputs=[],
#         outputs=chatbot_interface
#     )


#     # Feedback section
#     with gr.Row():
#         feedback_input = gr.Textbox(placeholder="Send us feedback...", label="Feedback")
#         send_feedback_button = gr.Button("Send Feedback")

#     send_feedback_button.click(
#         fn=send_feedback,
#         inputs=[feedback_input, chatbot_history, session_state, chatbot_instance],
#         outputs=[feedback_input]
#     )

#     # Initialize session on load
#     demo.load(
#         fn=initialize_session,
#         inputs=[],
#         outputs=[user_input, session_state, chatbot_instance, chatbot_history]
#     )

# # Launch
# demo.launch(share=True)