Spaces:
Build error
Build error
File size: 3,256 Bytes
ebb53b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# import part
import streamlit as st
from transformers import pipeline
import textwrap
import numpy as np
import soundfile as sf
import tempfile
import os
from PIL import Image
import string
# Initialize pipelines with caching
@st.cache_resource
def load_pipelines():
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
tts = pipeline("text-to-speech", model="facebook/mms-tts-eng")
return captioner, storyer, tts
captioner, storyer, tts = load_pipelines()
# Function part
# Function to generate content from an image
def generate_content(image):
pil_image = Image.open(image)
# Generate caption
caption = captioner(pil_image)[0]["generated_text"]
st.write("**๐ What's in the picture: ๐**")
st.write(caption)
# Create prompt for story
prompt = (
f"Write a funny, interesting children's story that precisely centered on this scene {caption}\nStory:"
f"in third-person narrative, that describes this scene exactly: {caption} "
f"mention the exact place, location or venue within {caption}"
)
# Generate raw story
raw = storyer(
prompt,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
no_repeat_ngram_size=2,
return_full_text=False
)[0]["generated_text"].strip()
# Define allowed characters to keep (removes symbols like * and ~)
allowed_chars = string.ascii_letters + string.digits + " .,!?\"'-"
# Clean the raw story by keeping only allowed characters
clean_raw = ''.join(c for c in raw if c in allowed_chars)
# Split into words and trim to 100 words
words = clean_raw.split()
story = " ".join(words[:100])
st.write("**๐ Your funny story: ๐**")
st.write(story)
# Generate audio from cleaned story
chunks = textwrap.wrap(story, width=200)
audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks])
# Save audio to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
sf.write(temp_file.name, audio, tts.model.config.sampling_rate)
temp_file_path = temp_file.name
return caption, story, temp_file_path
# Streamlit UI
st.title("โจ Magic Story Maker โจ")
st.markdown("Upload a picture to make a funny story and hear it too! ๐ธ")
uploaded_image = st.file_uploader("Choose your picture", type=["jpg", "jpeg", "png"])
# Streamlit UI (modified image display section)
if uploaded_image is None:
st.image("https://example.com/placeholder_image.jpg", caption="Upload your picture here! ๐ท", use_container_width=True)
else:
st.image(uploaded_image, caption="Your Picture ๐", use_container_width=True)
if st.button("โจ Make My Story! โจ"):
if uploaded_image is not None:
with st.spinner("๐ฎ Creating your magical story..."):
caption, story, audio_path = generate_content(uploaded_image)
st.success("๐ Your story is ready! ๐")
st.audio(audio_path, format="audio/wav")
os.remove(audio_path)
else:
st.warning("Please upload a picture first! ๐ธ") |