# import part import streamlit as st from transformers import pipeline import textwrap import numpy as np import soundfile as sf import tempfile import os from PIL import Image import string # Initialize pipelines with caching @st.cache_resource def load_pipelines(): captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") storyer = pipeline("text-generation", model="gpt2") tts = pipeline("text-to-speech", model="facebook/mms-tts-eng") return captioner, storyer, tts captioner, storyer, tts = load_pipelines() # Function part # Function to generate content from an image def generate_content(image): pil_image = Image.open(image) # Generate caption caption = captioner(pil_image)[0]["generated_text"] st.write("**🌟 What's in the picture: 🌟**") st.write(caption) # Create prompt for story prompt = ( f"Write a funny, interesting children's story centered on this scene: {caption}\n" f"Story in third-person narrative, describing this scene exactly: {caption} " f"Mention the exact place, location, or venue within {caption}. " f"Avoid numbers, random letter combinations, and single-letter words.") # Generate raw story with optimized parameters raw = storyer( prompt, max_new_tokens=100, temperature=0.6, top_p=0.85, no_repeat_ngram_size=0, return_full_text=False )[0]["generated_text"].strip() # Combine cleaning and word trimming in one step # Use regex to keep only allowed characters and remove single-letter words allowed_pattern = re.compile(r'[a-zA-Z0-9.,!?"\'-]+\b(? 1) # Split into words and trim to 100 words words = clean_raw.split() story = " ".join(words[:100]) story = clean_generated_story(raw) st.write("**πŸ“– Your funny story: πŸ“–**") st.write(story) return story # Generate audio from cleaned story chunks = textwrap.wrap(story, width=200) audio = np.concatenate([tts(chunk)["audio"].squeeze() for chunk in chunks]) # Save audio to temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: sf.write(temp_file.name, audio, tts.model.config.sampling_rate) temp_file_path = temp_file.name return caption, story, temp_file_path # Streamlit UI st.title("😎Story Maker") st.markdown("Upload a picture, I will generate a story for you") uploaded_image = st.file_uploader("Choose your picture", type=["jpg", "jpeg", "png"]) # Streamlit UI (modified image display section) if uploaded_image is None: st.image("https://example.com/placeholder_image.jpg", caption="Upload your picture here!", use_container_width=True) else: st.image(uploaded_image, caption="Your Picture ", use_container_width=True) if st.button("Generate a story"): if uploaded_image is not None: with st.spinner("Processing"): caption, story, audio_path = generate_content(uploaded_image) st.success(" Your story is ready!😊") st.audio(audio_path, format="audio/wav") os.remove(audio_path) else: st.warning("Please upload a picture first! ")