chat-PDF-demo / app.py
JPLTedCas's picture
Update app.py
a2a898e verified
raw
history blame
7.94 kB
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from langchain.vectorstores import Chroma
from gpt4all import GPT4All
# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
def add_logo():
st.markdown(
f"""
<style>
[data-testid="stSidebar"] {{
background-image: url(https://smbk.s3.amazonaws.com/media/organization_logos/111579646d1241f4be17bd7394dcb238.jpg);
background-repeat: no-repeat;
padding-top: 80px;
background-position: 20px 20px;
}}
</style>
""",
unsafe_allow_html=True,
)
def get_pdf_text(pdf_docs : list) -> str:
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_pdf_pages(pdf_docs):
"""
Extract text from a list of PDF documents.
Parameters
----------
pdf_docs : list
List of PDF documents to extract text from.
Returns
-------
str
Extracted text from all the PDF documents.
"""
pages = []
import tempfile
with tempfile.TemporaryDirectory() as tmpdirname:
for pdf in pdf_docs:
pdf_path=os.path.join(tmpdirname,pdf.name)
with open(pdf_path, "wb") as f:
f.write(pdf.getbuffer())
pdf_loader = UnstructuredPDFLoader(pdf_path)
pdf_pages = pdf_loader.load_and_split()
pages=pages+pdf_pages
return pages
#def get_text_chunks(text:str) ->list:
# text_splitter = CharacterTextSplitter(
# separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
# )
# chunks = text_splitter.split_text(text)
# return chunks
def get_text_chunks(pages):
"""
Split the input text into chunks.
Parameters
----------
text : str
The input text to be split.
Returns
-------
list
List of text chunks.
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024, chunk_overlap=64
)
texts = text_splitter.split_documents(pages)
print(str(len(texts)))
return texts
#def get_vectorstore(text_chunks : list) -> FAISS:
# model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# encode_kwargs = {
# "normalize_embeddings": True
# } # set True to compute cosine similarity
# embeddings = HuggingFaceBgeEmbeddings(
# model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
# )
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
def get_vectorstore(text_chunks):
"""
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
Parameters
----------
text_chunks : list
List of text chunks to be embedded.
Returns
-------
FAISS
A FAISS vector store containing the embeddings of the text chunks.
"""
MODEL_NAME = "WhereIsAI/UAE-Large-V1"
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
hf_embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
vectorstore = Chroma.from_documents(text_chunks, hf_embeddings, persist_directory="db")
return vectorstore
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
#llm = HuggingFaceHub(
# repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
# #repo_id="clibrain/lince-mistral-7b-it-es",
# #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
# model_kwargs={"temperature": 0.5, "max_length": 2096},#1048
#)
#llm = HuggingFaceHub(
# repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
# model_kwargs={"temperature": 0.5, "max_new_tokens": 1024, "max_length": 1048, "top_k": 3, "trust_remote_code": True, "torch_dtype": "auto"},
#)
llm = GPT4All("TheBloke/Orca-2-13B-GGUF")
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
)
return conversation_chain
#def handle_userinput(user_question:str):
# response = st.session_state.conversation({"pregunta": user_question})
# st.session_state.chat_history = response["chat_history"]
#
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(" Usuario: " + message.content)
# else:
# st.write("🤖 ChatBot: " + message.content)
def handle_userinput(user_question):
"""
Handle user input and generate a response using the conversational retrieval chain.
Parameters
----------
user_question : str
The user's question.
"""
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write("//_^ User: " + message.content)
else:
st.write("🤖 ChatBot: " + message.content)
def main():
st.set_page_config(
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
page_icon=":books:",
)
#st.markdown("# Charla con TedCasBot")
#st.markdown("Este Bot será tu aliado a la hora de buscar información en múltiples documentos pdf. Déjanos ayudarte! 🙏🏾")
st.markdown("# Chat with TedCasBot")
st.markdown("This Bot is a powerful AI tool designed to simplify the process of extracting information from PDF documents")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
#st.header("Charla con un Bot 🤖🦾 que te ayudará a responder preguntas sobre tus pdfs:")
st.header("Chat with the TedCasBot. He will help you with any doubt you may have with your documents:")
user_question = st.text_input("Ask what you need!:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
add_logo()
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your documents and ress 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
pages = get_pdf_pages(pdf_docs)
# get the text chunks
#text_chunks = get_text_chunks(raw_text)
text_chunks = get_text_chunks(pages)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == "__main__":
main()