File size: 6,587 Bytes
ec9e166
 
 
 
29d9fe7
acd296a
ec9e166
 
 
 
 
 
 
 
 
3e1c3a5
 
ec9e166
ad07962
 
165f5e4
ad07962
165f5e4
 
 
 
 
 
 
 
 
 
ad07962
 
 
 
 
 
 
8c29218
ec9e166
 
 
 
 
 
 
f8312e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9e166
f8312e2
5635ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9e166
5635ea3
 
 
 
 
ec9e166
 
8c29218
c24dee1
ec9e166
 
 
 
 
 
 
 
 
 
8c29218
 
ec9e166
03bd337
 
6b53f9c
016d374
ec9e166
 
 
 
 
 
 
 
 
e6f76c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9e166
 
 
 
e6f76c5
ec9e166
e370bd9
ec9e166
 
e6f76c5
 
ec9e166
 
 
 
 
 
730194c
 
ec9e166
 
 
8c29218
ec9e166
 
 
 
 
8c29218
730194c
 
ec9e166
 
 
8c29218
ec9e166
13387eb
730194c
ec9e166
730194c
ec9e166
730194c
 
ec9e166
 
f8312e2
 
ec9e166
f8312e2
 
ec9e166
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub

# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']


def add_logo():

    st.markdown(
        f"""
            <style>
                [data-testid="stSidebar"] {{
                    background-image: url(https://smbk.s3.amazonaws.com/media/organization_logos/111579646d1241f4be17bd7394dcb238.jpg);
                    background-repeat: no-repeat;
                    padding-top: 80px;
                    background-position: 20px 20px;
                }}
            </style>
            """,
        unsafe_allow_html=True,
    )





def get_pdf_text(pdf_docs : list) -> str:
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_pdf_pages(pdf_docs):
    """
    Extract text from a list of PDF documents.
    Parameters
    ----------
    pdf_docs : list
        List of PDF documents to extract text from.
    Returns
    -------
    str
        Extracted text from all the PDF documents.
    """
    pages = []
    import tempfile

    with tempfile.TemporaryDirectory() as tmpdirname:
        for pdf in pdf_docs:
            pdf_path=os.path.join(tmpdirname,pdf.name)
            with open(pdf_path, "wb") as f:
               f.write(pdf.getbuffer())
        
            pdf_loader = UnstructuredPDFLoader(pdf_path)
            pdf_pages = pdf_loader.load_and_split()
            pages=pages+pdf_pages
    return pages

    
#def get_text_chunks(text:str) ->list:
#    text_splitter = CharacterTextSplitter(
#        separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
#    )
#    chunks = text_splitter.split_text(text)
#    return chunks

def get_text_chunks(pages):
    """
    Split the input text into chunks.
    Parameters
    ----------
    text : str
        The input text to be split.
    Returns
    -------
    list
        List of text chunks.
    """
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1024, chunk_overlap=64
    )
    texts = text_splitter.split_documents(pages)
    print(str(len(texts)))
    return texts




def get_vectorstore(text_chunks : list) -> FAISS:
    model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
    encode_kwargs = {
        "normalize_embeddings": True
    }  # set True to compute cosine similarity
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
    # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
    llm = HuggingFaceHub(
        repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
        #repo_id="clibrain/lince-mistral-7b-it-es",
        #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
        model_kwargs={"temperature": 0.5, "max_length": 2096},#1048
    )

    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm, retriever=vectorstore.as_retriever(), memory=memory
    )
    return conversation_chain


#def handle_userinput(user_question:str):
#    response = st.session_state.conversation({"pregunta": user_question})
#    st.session_state.chat_history = response["chat_history"]
#
#    for i, message in enumerate(st.session_state.chat_history):
 #       if i % 2 == 0:
#            st.write("   Usuario: " + message.content)
 #       else:
#            st.write("🤖 ChatBot: " + message.content)


def handle_userinput(user_question):
    """
    Handle user input and generate a response using the conversational retrieval chain.
    Parameters
    ----------
    user_question : str
        The user's question.
    """
    response = st.session_state.conversation({"question": user_question})
    st.session_state.chat_history = response["chat_history"]

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write("//_^ User: " + message.content)
        else:
            st.write("🤖 ChatBot: " + message.content)




def main():
    st.set_page_config(
        page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
        page_icon=":books:",
    )

    st.markdown("# Charla con TedCasBot")
    st.markdown("Este Bot será tu aliado a la hora de buscar información en múltiples documentos pdf. Déjanos ayudarte! 🙏🏾")

    st.write(css, unsafe_allow_html=True)

    
    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    
    st.header("Charla con un Bot 🤖🦾 que te ayudará a responder preguntas sobre tus pdfs:")
    user_question = st.text_input("Haz tu pregunta!:")
    if user_question:
        handle_userinput(user_question)

    
    with st.sidebar:
        add_logo()
        st.subheader("Tus documentos")
        pdf_docs = st.file_uploader(
            "Sube tus documentos y haz click en 'Procesar'", accept_multiple_files=True
        )
        if st.button("Procesar"):
            with st.spinner("Procesando"):
                # get pdf text
                raw_text = get_pdf_text(pdf_docs)
                pages = get_pdf_pages(pdf_docs)
                
                # get the text chunks
                #text_chunks = get_text_chunks(raw_text)
                text_chunks = get_text_chunks(pages)
                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(vectorstore)


if __name__ == "__main__":
    main()