#from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline #model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b7") #tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b7") #pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2048, repetition_penalty=1.2, temperature=0.4) from transformers import pipeline # Cargar el modelo preentrenado (Bloom o cualquier otro compatible) def load_pipeline(): return pipeline("text-generation", model="bigscience/bloom-560m") pipe = load_pipeline()