import streamlit as st #line:1 import pandas as pd #line:2 uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4 if uploaded_file :#line:6 df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8 uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11 if uploaded_file2 :#line:13 df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15 def ConvertCitrus (OO0O000O0O0OO0OO0 ,OOOO0OOO0O00O0OO0 ):#line:21 import RemoveHTMLtags as RHT #line:24 O000000O00OO0O0OO =str ('','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41 for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in OO0O000O0O0OO0OO0 .iterrows ():#line:55 OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]=RHT .remove_tags (str (OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]))#line:56 #print (OO0O000O0O0OO0OO0 .iloc [:,2 ])#line:58 OO0O000O0O0OO0OO0 .iloc [:,2 ]=pd .Series (OO0O000O0O0OO0OO0 .iloc [:,2 ],dtype ="string")#line:63 #print (OO0O000O0O0OO0OO0 .iloc [:,2 ].dtype )#line:64 OO0000OO0OOOO0O00 =OO0O000O0O0OO0OO0 .columns .tolist ()#line:88 OO0O0OO0OOO00OOOO =OO0000OO0OOOO0O00 .copy ()#line:89 OO0O0OO0OOO00OOOO [1 ]=OO0000OO0OOOO0O00 [1 ]#line:90 OO0O0OO0OOO00OOOO [17 ]=OO0000OO0OOOO0O00 [17 ]#line:92 O00OO00000OOO000O =OO0O000O0O0OO0OO0 [OO0O0OO0OOO00OOOO ].copy (deep =True )#line:113 #print ("SKU")#line:114 #print (OO0O000O0O0OO0OO0 .iloc [:,24 ])#line:115 O0OO00OO0O0O0OOO0 =OO0O000O0O0OO0OO0 .copy (deep =True )#line:117 O00OO00000OOO000O .iloc [:,0 ]=O0OO00OO0O0O0OOO0 .iloc [:,13 ].copy (deep =True )#line:119 print(OOO0OOO00OO0O00OO [20 ],OOO0OOO00OO0O00OO [21 ]) for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O0OO00OO0O0O0OOO0 .iterrows ():#line:122 st.write(OOO0OOO00OO0O00OO [20 ],OOO0OOO00OO0O00OO [21 ]) if not pd .isnull (OOO0OOO00OO0O00OO [21 ]):#line:123 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [21 ]#line:125 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=((( float(OOO0OOO00OO0O00OO [21 ]) /1.2 )/1.6 )*0.96 )#line:126 print(OOO0OOO00OO0O00OO [21 ]) else :#line:128 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [20 ]#line:130 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=((( float(OOO0OOO00OO0O00OO [20 ])/1.2 )/1.6 )*0.96 )#line:131 print (OOO0OOO00OO0O00OO [20 ])#line:132 #print ("COLUMN5")#line:133 #print (O00OO00000OOO000O .iloc [:,5 ])#line:134 O00OO00000OOO000O .iloc [:,7 ]=O0OO00OO0O0O0OOO0 .iloc [:,11 ].copy (deep =True )#line:136 O00OO00000OOO000O .iloc [:,2 ]=O0OO00OO0O0O0OOO0 .iloc [:,24 ].copy (deep =True )#line:138 O00OO00000OOO000O .iloc [:,8 ]=O0OO00OO0O0O0OOO0 .iloc [:,9 ].copy (deep =True )#line:140 O00OO00000OOO000O .iloc [:,10 ]=O0OO00OO0O0O0OOO0 .iloc [:,3 ].copy (deep =True )#line:141 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:142 O00OO00000OOO000O .columns .values [10 ]='Brand'#line:143 O00OO00000OOO000O .iloc [:,30 ]=O0OO00OO0O0O0OOO0 .iloc [:,15 ].copy (deep =True )#line:145 O00OO00000OOO000O .iloc [:,31 ]=O0OO00OO0O0O0OOO0 .iloc [:,5 ].copy (deep =True )#line:146 O00OO00000OOO000O .iloc [:,32 ]=O0OO00OO0O0O0OOO0 .iloc [:,2 ].copy (deep =True )#line:147 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:149 #print (list (O00OO00000OOO000O .columns .values ))#line:151 O00OO00000OOO000O .iloc [:,20 ]=O00OO00000OOO000O .iloc [:,20 ].astype (float )#line:160 from babel .numbers import format_currency #line:162 O00OO00000OOO000O .iloc [:,4 ]=O00OO00000OOO000O .iloc [:,4 ].apply (lambda OO00O0O000O0000O0 :format_currency (OO00O0O000O0000O0 ,currency ="GBP",locale ="en_GB"))#line:163 O00OO00000OOO000O .iloc [:,5 ]=O00OO00000OOO000O .iloc [:,5 ].apply (lambda O0O0O0O0O00OOOOOO :format_currency (O0O0O0O0O00OOOOOO ,currency ="GBP",locale ="en_GB"))#line:164 O00OO00000OOO000O .iloc [:,2 ]=O00OO00000OOO000O .iloc [:,2 ].astype (str ).str .replace ("'","")#line:168 O00OO00000OOO000O .iloc [:,24 ]=O00OO00000OOO000O .iloc [:,24 ].astype (str ).str .replace ("'","")#line:172 #print ("SKU")#line:174 #print (O00OO00000OOO000O .iloc [:,2 ])#line:175 #print (list (O00OO00000OOO000O .columns .values ))#line:194 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:199 for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O00OO00000OOO000O .iterrows ():#line:202 if O0OO00OOO0O00O00O ==0 :#line:203 print (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)'])#line:204 if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:205 if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:206 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:207 else :#line:208 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Mens"#line:209 if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:211 if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:212 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:213 else :#line:214 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Womens"#line:215 if " ladys"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:216 O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Ladys"#line:217 if O0OO00OOO0O00O00O ==0 :#line:218 print (OOO0OOO00OO0O00OO [12 ])#line:219 #print (O00OO00000OOO000O .iloc [:,12 ])#line:220 O00OO00000OOO000O .iloc [:,6 ]=""#line:224 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [0 ]:'Style Number'},inplace =True )#line:226 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [1 ]:'Product Name'},inplace =True )#line:227 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [2 ]:'Vendor SKU'},inplace =True )#line:228 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [3 ]:'UPC/EAN'},inplace =True )#line:229 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [4 ]:'Unit Cost'},inplace =True )#line:230 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [5 ]:'Unit MSRP'},inplace =True )#line:231 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:232 #print (O00OO00000OOO000O .columns [6 ])#line:233 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [7 ]:'Colour'},inplace =True )#line:234 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:236 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [9 ]:'Size 2'},inplace =True )#line:237 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:238 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [11 ]:'Year of Season'},inplace =True )#line:239 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [12 ]:'Gender'},inplace =True )#line:240 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:241 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [14 ]:'Other Bar Code'},inplace =True )#line:242 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [15 ]:'VAT'},inplace =True )#line:243 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [16 ]:'Pack Qty'},inplace =True )#line:244 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [17 ]:'Stock Count'},inplace =True )#line:246 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [18 ]:'Price Band 1'},inplace =True )#line:247 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [19 ]:'Price Band 2'},inplace =True )#line:248 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [20 ]:'IE VAT'},inplace =True )#line:249 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:250 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [22 ]:'MSRP in Euros'},inplace =True )#line:251 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [23 ]:'Commodity Codes'},inplace =True )#line:253 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [24 ]:'Country of Origin'},inplace =True )#line:254 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [30 ]:'Weight'},inplace =True )#line:256 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [31 ]:'Short Description'},inplace =True )#line:257 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [32 ]:'Long Description'},inplace =True )#line:258 O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [33 ]:'Video Link'},inplace =True )#line:259 O00OO00000OOO000O .iloc [:,9 ]=""#line:267 O00OO00000OOO000O .iloc [:,13 ]=""#line:269 O00OO00000OOO000O .iloc [:,14 ]=""#line:271 O00OO00000OOO000O .iloc [:,16 ]=""#line:273 O00OO00000OOO000O .iloc [:,18 ]=""#line:275 O00OO00000OOO000O .iloc [:,19 ]=""#line:277 O00OO00000OOO000O .iloc [:,20 ]=""#line:279 O00OO00000OOO000O .iloc [:,21 ]=""#line:281 O00OO00000OOO000O .iloc [:,22 ]=""#line:283 O00OO00000OOO000O .iloc [:,33 ]=""#line:288 O00OO00000OOO000O .iloc [:,15 ]="20"#line:293 #print (list (O00OO00000OOO000O .columns .values ))#line:295 O00OO00000OOO000O .iloc [:,3 ]=O00OO00000OOO000O .iloc [:,2 ]#line:298 O00OO00000OOO000O .columns .values [10 ]='Brand'#line:299 O00OO00000OOO000O .iloc [:,11 ]=""#line:300 O00OO00000OOO000O .iloc [:,22 ]=""#line:301 #print ("SKU")#line:305 #print (O00OO00000OOO000O .iloc [:,2 ])#line:306 O00OO00000OOO000O .iloc [:,23 ]=""#line:311 O00OO00000OOO000O .iloc [:,24 ]=""#line:314 O0O0O0O000OOO0OO0 =OO0O000O0O0OO0OO0 ['Variant SKU']#line:323 OO000O0O0O0O00OOO =OO0O000O0O0OO0OO0 ['Variant SKU'].duplicated ().any ()#line:324 OO000O0O0O0O00OOO =OOOO0OOO0O00O0OO0 ['SKU'].duplicated ().any ()#line:326 O000OOO0000OO000O =OOOO0OOO0O00O0OO0 [OOOO0OOO0O00O0OO0 .duplicated (['SKU'],keep =False )]#line:328 OOOOO0OOO0OO000OO =OO0O000O0O0OO0OO0 [OO0O000O0O0OO0OO0 .duplicated (['Variant SKU'],keep =False )]#line:331 OOOO0OOO0O00O0OO0 =OOOO0OOO0O00O0OO0 .set_index ('SKU')#line:335 OOOO0OOO0O00O0OO0 .reindex (O0O0O0O000OOO0OO0 )#line:340 #print ("TERMINE")#line:357 O00OO00000OOO000O .iloc [:,24 ]=OOOO0OOO0O00O0OO0 .loc [:,'COO']#line:359 O00OO00000OOO000O .iloc [:,23 ]=OOOO0OOO0O00O0OO0 .loc [:,'HS Code']#line:360 O00OO00000OOO000O ['Commodity Codes']=OOOO0OOO0O00O0OO0 ['HS Code'].values #line:362 O00OO00000OOO000O ['Country of Origin']=OOOO0OOO0O00O0OO0 ['COO'].values #line:363 #print ("SKU")#line:370 #print (O00OO00000OOO000O .iloc [:,2 ])#line:371 OO0O0000O00OO0O0O =[]#line:376 for OO0OOO0OOOO0000O0 in range (49 ,58 ):#line:377 OO0O0000O00OO0O0O .append (str (OO0OOO0OOOO0000O0 ))#line:379 O00OO00000OOO000O [str (OO0OOO0OOOO0000O0 )]=''#line:380 O0OOO00OO0O0O00O0 =[]#line:384 for OO0OOO0OOOO0000O0 in range (0 ,24 ):#line:385 O0OOO00OO0O0O00O0 .append (34 +OO0OOO0OOOO0000O0 )#line:386 OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:392 O0OOO0O00OO0O00O0 =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:393 OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:394 O00OO00000OOO000O .rename (columns =dict (zip (OO0OOO00O00OOOO00 ,O0OOO0O00OO0O00O0 )),inplace =True )#line:395 O00OO00000OOO000O .iloc [:,34 :58 ]=''#line:398 #print ("SKUf")#line:401 #print (O00OO00000OOO000O .iloc [:,2 ])#line:402 O00000O000O0OO0O0 =O00OO00000OOO000O .loc [pd .isna (O00OO00000OOO000O .loc [:,'Product Name']),:].index #line:422 O00OO0OO0O0OO000O =O00OO00000OOO000O .loc [O00000O000O0OO0O0 ,'Image Src']#line:423 OO000OOOO000000OO =[]#line:424 for OOO0OOO00OO0O00OO in O00OO00000OOO000O .index :#line:425 if pd .notna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Product Name']):#line:427 OOO00O00000O0O0O0 =OOO0OOO00OO0O00OO #line:429 OO0OOO0OOOO0000O0 =1 #line:430 OO0OO0O0OOOO0O0O0 =[]#line:432 OO0OO0O0OOOO0O0O0 .append (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Image Src'])#line:434 while pd .isna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Product Name'])and OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0