import streamlit as st #line:1
import pandas as pd #line:2
uploaded_file =st .file_uploader ("Choose product file",type ="csv")#line:4
if uploaded_file :#line:6
df =pd .read_csv (uploaded_file ,encoding ='utf8')#line:8
uploaded_file2 =st .file_uploader ("Choose inventory file",type ="csv")#line:11
if uploaded_file2 :#line:13
df2 =pd .read_csv (uploaded_file2 ,encoding ='utf8')#line:15
def ConvertCitrus (OO0O000O0O0OO0OO0 ,OOOO0OOO0O00O0OO0 ):#line:21
import RemoveHTMLtags as RHT #line:24
O000000O00OO0O0OO =str ('','td {border: 1px solid #ccc','}br {mso-data-placement:same-cell','}','>']#line:41
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in OO0O000O0O0OO0OO0 .iterrows ():#line:55
OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]=RHT .remove_tags (str (OO0O000O0O0OO0OO0 .iloc [O0OO00OOO0O00O00O ,2 ]))#line:56
#print (OO0O000O0O0OO0OO0 .iloc [:,2 ])#line:58
OO0O000O0O0OO0OO0 .iloc [:,2 ]=pd .Series (OO0O000O0O0OO0OO0 .iloc [:,2 ],dtype ="string")#line:63
#print (OO0O000O0O0OO0OO0 .iloc [:,2 ].dtype )#line:64
OO0000OO0OOOO0O00 =OO0O000O0O0OO0OO0 .columns .tolist ()#line:88
OO0O0OO0OOO00OOOO =OO0000OO0OOOO0O00 .copy ()#line:89
OO0O0OO0OOO00OOOO [1 ]=OO0000OO0OOOO0O00 [1 ]#line:90
OO0O0OO0OOO00OOOO [17 ]=OO0000OO0OOOO0O00 [17 ]#line:92
O00OO00000OOO000O =OO0O000O0O0OO0OO0 [OO0O0OO0OOO00OOOO ].copy (deep =True )#line:113
#print ("SKU")#line:114
#print (OO0O000O0O0OO0OO0 .iloc [:,24 ])#line:115
O0OO00OO0O0O0OOO0 =OO0O000O0O0OO0OO0 .copy (deep =True )#line:117
O00OO00000OOO000O .iloc [:,0 ]=O0OO00OO0O0O0OOO0 .iloc [:,13 ].copy (deep =True )#line:119
print(OOO0OOO00OO0O00OO [20 ],OOO0OOO00OO0O00OO [21 ])
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O0OO00OO0O0O0OOO0 .iterrows ():#line:122
st.write(OOO0OOO00OO0O00OO [20 ],OOO0OOO00OO0O00OO [21 ])
if not pd .isnull (OOO0OOO00OO0O00OO [21 ]):#line:123
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [21 ]#line:125
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=((( float(OOO0OOO00OO0O00OO [21 ]) /1.2 )/1.6 )*0.96 )#line:126
print(OOO0OOO00OO0O00OO [21 ])
else :#line:128
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,5 ]=OOO0OOO00OO0O00OO [20 ]#line:130
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,4 ]=((( float(OOO0OOO00OO0O00OO [20 ])/1.2 )/1.6 )*0.96 )#line:131
print (OOO0OOO00OO0O00OO [20 ])#line:132
#print ("COLUMN5")#line:133
#print (O00OO00000OOO000O .iloc [:,5 ])#line:134
O00OO00000OOO000O .iloc [:,7 ]=O0OO00OO0O0O0OOO0 .iloc [:,11 ].copy (deep =True )#line:136
O00OO00000OOO000O .iloc [:,2 ]=O0OO00OO0O0O0OOO0 .iloc [:,24 ].copy (deep =True )#line:138
O00OO00000OOO000O .iloc [:,8 ]=O0OO00OO0O0O0OOO0 .iloc [:,9 ].copy (deep =True )#line:140
O00OO00000OOO000O .iloc [:,10 ]=O0OO00OO0O0O0OOO0 .iloc [:,3 ].copy (deep =True )#line:141
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:142
O00OO00000OOO000O .columns .values [10 ]='Brand'#line:143
O00OO00000OOO000O .iloc [:,30 ]=O0OO00OO0O0O0OOO0 .iloc [:,15 ].copy (deep =True )#line:145
O00OO00000OOO000O .iloc [:,31 ]=O0OO00OO0O0O0OOO0 .iloc [:,5 ].copy (deep =True )#line:146
O00OO00000OOO000O .iloc [:,32 ]=O0OO00OO0O0O0OOO0 .iloc [:,2 ].copy (deep =True )#line:147
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:149
#print (list (O00OO00000OOO000O .columns .values ))#line:151
O00OO00000OOO000O .iloc [:,20 ]=O00OO00000OOO000O .iloc [:,20 ].astype (float )#line:160
from babel .numbers import format_currency #line:162
O00OO00000OOO000O .iloc [:,4 ]=O00OO00000OOO000O .iloc [:,4 ].apply (lambda OO00O0O000O0000O0 :format_currency (OO00O0O000O0000O0 ,currency ="GBP",locale ="en_GB"))#line:163
O00OO00000OOO000O .iloc [:,5 ]=O00OO00000OOO000O .iloc [:,5 ].apply (lambda O0O0O0O0O00OOOOOO :format_currency (O0O0O0O0O00OOOOOO ,currency ="GBP",locale ="en_GB"))#line:164
O00OO00000OOO000O .iloc [:,2 ]=O00OO00000OOO000O .iloc [:,2 ].astype (str ).str .replace ("'","")#line:168
O00OO00000OOO000O .iloc [:,24 ]=O00OO00000OOO000O .iloc [:,24 ].astype (str ).str .replace ("'","")#line:172
#print ("SKU")#line:174
#print (O00OO00000OOO000O .iloc [:,2 ])#line:175
#print (list (O00OO00000OOO000O .columns .values ))#line:194
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:199
for O0OO00OOO0O00O00O ,OOO0OOO00OO0O00OO in O00OO00000OOO000O .iterrows ():#line:202
if O0OO00OOO0O00O00O ==0 :#line:203
print (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)'])#line:204
if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:205
if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:206
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:207
else :#line:208
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Mens"#line:209
if " womens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:211
if " mens"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:212
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Unisex"#line:213
else :#line:214
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Womens"#line:215
if " ladys"in str (OOO0OOO00OO0O00OO ['Colour Code (Simple Colour)']):#line:216
O00OO00000OOO000O .iloc [O0OO00OOO0O00O00O ,12 ]="Ladys"#line:217
if O0OO00OOO0O00O00O ==0 :#line:218
print (OOO0OOO00OO0O00OO [12 ])#line:219
#print (O00OO00000OOO000O .iloc [:,12 ])#line:220
O00OO00000OOO000O .iloc [:,6 ]=""#line:224
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [0 ]:'Style Number'},inplace =True )#line:226
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [1 ]:'Product Name'},inplace =True )#line:227
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [2 ]:'Vendor SKU'},inplace =True )#line:228
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [3 ]:'UPC/EAN'},inplace =True )#line:229
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [4 ]:'Unit Cost'},inplace =True )#line:230
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [5 ]:'Unit MSRP'},inplace =True )#line:231
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [6 ]:'Colour Code (Simple Colour)'},inplace =True )#line:232
#print (O00OO00000OOO000O .columns [6 ])#line:233
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [7 ]:'Colour'},inplace =True )#line:234
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [8 ]:'Size 1'},inplace =True )#line:236
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [9 ]:'Size 2'},inplace =True )#line:237
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [10 ]:'Brand'},inplace =True )#line:238
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [11 ]:'Year of Season'},inplace =True )#line:239
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [12 ]:'Gender'},inplace =True )#line:240
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [13 ]:'Manufacturer Part Code'},inplace =True )#line:241
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [14 ]:'Other Bar Code'},inplace =True )#line:242
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [15 ]:'VAT'},inplace =True )#line:243
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [16 ]:'Pack Qty'},inplace =True )#line:244
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [17 ]:'Stock Count'},inplace =True )#line:246
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [18 ]:'Price Band 1'},inplace =True )#line:247
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [19 ]:'Price Band 2'},inplace =True )#line:248
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [20 ]:'IE VAT'},inplace =True )#line:249
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [21 ]:'Unit Cost in Euros'},inplace =True )#line:250
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [22 ]:'MSRP in Euros'},inplace =True )#line:251
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [23 ]:'Commodity Codes'},inplace =True )#line:253
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [24 ]:'Country of Origin'},inplace =True )#line:254
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [30 ]:'Weight'},inplace =True )#line:256
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [31 ]:'Short Description'},inplace =True )#line:257
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [32 ]:'Long Description'},inplace =True )#line:258
O00OO00000OOO000O .rename (columns ={O00OO00000OOO000O .columns [33 ]:'Video Link'},inplace =True )#line:259
O00OO00000OOO000O .iloc [:,9 ]=""#line:267
O00OO00000OOO000O .iloc [:,13 ]=""#line:269
O00OO00000OOO000O .iloc [:,14 ]=""#line:271
O00OO00000OOO000O .iloc [:,16 ]=""#line:273
O00OO00000OOO000O .iloc [:,18 ]=""#line:275
O00OO00000OOO000O .iloc [:,19 ]=""#line:277
O00OO00000OOO000O .iloc [:,20 ]=""#line:279
O00OO00000OOO000O .iloc [:,21 ]=""#line:281
O00OO00000OOO000O .iloc [:,22 ]=""#line:283
O00OO00000OOO000O .iloc [:,33 ]=""#line:288
O00OO00000OOO000O .iloc [:,15 ]="20"#line:293
#print (list (O00OO00000OOO000O .columns .values ))#line:295
O00OO00000OOO000O .iloc [:,3 ]=O00OO00000OOO000O .iloc [:,2 ]#line:298
O00OO00000OOO000O .columns .values [10 ]='Brand'#line:299
O00OO00000OOO000O .iloc [:,11 ]=""#line:300
O00OO00000OOO000O .iloc [:,22 ]=""#line:301
#print ("SKU")#line:305
#print (O00OO00000OOO000O .iloc [:,2 ])#line:306
O00OO00000OOO000O .iloc [:,23 ]=""#line:311
O00OO00000OOO000O .iloc [:,24 ]=""#line:314
O0O0O0O000OOO0OO0 =OO0O000O0O0OO0OO0 ['Variant SKU']#line:323
OO000O0O0O0O00OOO =OO0O000O0O0OO0OO0 ['Variant SKU'].duplicated ().any ()#line:324
OO000O0O0O0O00OOO =OOOO0OOO0O00O0OO0 ['SKU'].duplicated ().any ()#line:326
O000OOO0000OO000O =OOOO0OOO0O00O0OO0 [OOOO0OOO0O00O0OO0 .duplicated (['SKU'],keep =False )]#line:328
OOOOO0OOO0OO000OO =OO0O000O0O0OO0OO0 [OO0O000O0O0OO0OO0 .duplicated (['Variant SKU'],keep =False )]#line:331
OOOO0OOO0O00O0OO0 =OOOO0OOO0O00O0OO0 .set_index ('SKU')#line:335
OOOO0OOO0O00O0OO0 .reindex (O0O0O0O000OOO0OO0 )#line:340
#print ("TERMINE")#line:357
O00OO00000OOO000O .iloc [:,24 ]=OOOO0OOO0O00O0OO0 .loc [:,'COO']#line:359
O00OO00000OOO000O .iloc [:,23 ]=OOOO0OOO0O00O0OO0 .loc [:,'HS Code']#line:360
O00OO00000OOO000O ['Commodity Codes']=OOOO0OOO0O00O0OO0 ['HS Code'].values #line:362
O00OO00000OOO000O ['Country of Origin']=OOOO0OOO0O00O0OO0 ['COO'].values #line:363
#print ("SKU")#line:370
#print (O00OO00000OOO000O .iloc [:,2 ])#line:371
OO0O0000O00OO0O0O =[]#line:376
for OO0OOO0OOOO0000O0 in range (49 ,58 ):#line:377
OO0O0000O00OO0O0O .append (str (OO0OOO0OOOO0000O0 ))#line:379
O00OO00000OOO000O [str (OO0OOO0OOOO0000O0 )]=''#line:380
O0OOO00OO0O0O00O0 =[]#line:384
for OO0OOO0OOOO0000O0 in range (0 ,24 ):#line:385
O0OOO00OO0O0O00O0 .append (34 +OO0OOO0OOOO0000O0 )#line:386
OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:392
O0OOO0O00OO0O00O0 =['Tech Specs','Size Chart','Geometry Chart','Frame','Rear Shock','Fork','Headset','Stem','Handlebar','Bar Tape / Grip','Brakes Levers','Brake Calipers','Tyres','Wheels','Front Derailleur','Rear Derailleur','Shift Levers','Chain','Cassette','Chainset','Bottom Bracket','Pedals','Saddle','Seatpost']#line:393
OO0OOO00O00OOOO00 =O00OO00000OOO000O .columns [O0OOO00OO0O0O00O0 ]#line:394
O00OO00000OOO000O .rename (columns =dict (zip (OO0OOO00O00OOOO00 ,O0OOO0O00OO0O00O0 )),inplace =True )#line:395
O00OO00000OOO000O .iloc [:,34 :58 ]=''#line:398
#print ("SKUf")#line:401
#print (O00OO00000OOO000O .iloc [:,2 ])#line:402
O00000O000O0OO0O0 =O00OO00000OOO000O .loc [pd .isna (O00OO00000OOO000O .loc [:,'Product Name']),:].index #line:422
O00OO0OO0O0OO000O =O00OO00000OOO000O .loc [O00000O000O0OO0O0 ,'Image Src']#line:423
OO000OOOO000000OO =[]#line:424
for OOO0OOO00OO0O00OO in O00OO00000OOO000O .index :#line:425
if pd .notna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Product Name']):#line:427
OOO00O00000O0O0O0 =OOO0OOO00OO0O00OO #line:429
OO0OOO0OOOO0000O0 =1 #line:430
OO0OO0O0OOOO0O0O0 =[]#line:432
OO0OO0O0OOOO0O0O0 .append (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO ,'Image Src'])#line:434
while pd .isna (O00OO00000OOO000O .loc [OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0 ,'Product Name'])and OOO0OOO00OO0O00OO +OO0OOO0OOOO0000O0