import re import gradio as gr from scipy.sparse import load_npz import torch from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import normalize from transformers import BertTokenizer, BertModel import numpy as np from datasets import load_dataset from gensim.models import KeyedVectors class ArxivSearch: def __init__(self, dataset, embedding="tfidf"): self.dataset = dataset self.embedding = embedding self.documents = [] self.titles = [] self.raw_texts = [] self.arxiv_ids = [] self.embedding_dropdown = gr.Dropdown( choices=["tfidf", "word2vec", "bert"], value="tfidf", label="Model" ) self.iface = gr.Interface( fn=self.search_function, inputs=[ gr.Textbox(lines=1, placeholder="Enter your search query"), self.embedding_dropdown ], outputs=gr.Markdown(), title="arXiv Search Engine", description="Search arXiv papers by keyword and embedding model.", ) self.load_data(dataset) self.load_model(embedding) self.iface.launch() # # --- Load data and embeddings --- # with open("feature_names.txt", "r") as f: # feature_names = [line.strip() for line in f] # tfidf_matrix = load_npz("tfidf_matrix_train.npz") # Load dataset and initialize search engine def load_data(self, dataset): train_data = dataset["train"] for item in train_data.select(range(len(train_data))): text = item["text"] if not text or len(text.strip()) < 10: continue lines = text.splitlines() title_lines = [] found_arxiv = False arxiv_id = None for line in lines: line_strip = line.strip() if not found_arxiv and line_strip.lower().startswith("arxiv:"): found_arxiv = True match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE) if match: arxiv_id = match.group(0).lower() elif not found_arxiv: title_lines.append(line_strip) else: if line_strip.lower().startswith("abstract"): break title = " ".join(title_lines).strip() self.raw_texts.append(text.strip()) self.titles.append(title) self.documents.append(text.strip()) self.arxiv_ids.append(arxiv_id) def keyword_match_ranking(self, query, top_n=5): query_terms = query.lower().split() query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms] if not query_indices: return [] scores = [] for doc_idx in range(self.tfidf_matrix.shape[0]): doc_vector = self.tfidf_matrix[doc_idx] doc_score = sum(doc_vector[0, i] for i in query_indices) if doc_score > 0: scores.append((doc_idx, doc_score)) scores.sort(key=lambda x: x[1], reverse=True) return scores[:top_n] def word2vec_search(self, query, top_n=5): tokens = [word for word in query.split() if word in self.wv_model.key_to_index] if not tokens: return [] vectors = np.array([self.wv_model[word] for word in tokens]) query_vec = normalize(np.mean(vectors, axis=0).reshape(1, -1)) sims = cosine_similarity(query_vec, self.word2vec_embeddings).flatten() top_indices = sims.argsort()[::-1][:top_n] return [(i, sims[i]) for i in top_indices] def bert_search(self, query, top_n=5): with torch.no_grad(): inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True) outputs = self.model(**inputs) query_vec = normalize(outputs.last_hidden_state[:, 0, :].numpy()) sims = cosine_similarity(query_vec, self.bert_embeddings).flatten() top_indices = sims.argsort()[::-1][:top_n] return [(i, sims[i]) for i in top_indices] def load_model(self, embedding): if embedding == "tfidf": self.tfidf_matrix = load_npz("TF-IDF embeddings/tfidf_matrix_train.npz") with open("TF-IDF embeddings/feature_names.txt", "r") as f: self.feature_names = [line.strip() for line in f.readlines()] elif embedding == "word2vec": # Use trimmed model here self.word2vec_embeddings = normalize(np.load("Word2Vec embeddings/word2vec_embedding.npz")["word2vec_embedding"]) self.wv_model = KeyedVectors.load("models/word2vec-trimmed.model") elif embedding == "bert": self.bert_embeddings = normalize(np.load("BERT embeddings/bert_embedding.npz")["bert_embedding"]) self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') self.model = BertModel.from_pretrained('bert-base-uncased') self.model.eval() else: raise ValueError(f"Unsupported embedding type: {embedding}") def on_model_change(self, change): new_model = change["new"] self.embedding = new_model self.load_model(new_model) def snippet_before_abstract(self, text): pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE) match = pattern.search(text) if match: return text[:match.start()].strip() else: return text[:100].strip() def search_function(self, query, embedding): # Load or switch embedding model here if needed if embedding == "tfidf": results = self.keyword_match_ranking(query) elif embedding == "word2vec": results = self.word2vec_search(query) elif embedding == "bert": results = self.bert_search(query) else: return "No results found." if not results: return "No results found." output = "" display_rank = 1 for idx, score in results: if not self.arxiv_ids[idx]: continue link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}" snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '
') output += f"### Document {display_rank}\n" output += f"[arXiv Link]({link})\n\n" output += f"
{snippet}
\n\n---\n" display_rank += 1 return output if __name__ == "__main__": dataset = load_dataset("ccdv/arxiv-classification", "no_ref") # replace with your dataset search_engine = ArxivSearch(dataset, embedding="tfidf") # Initialize with tfidf or any other embedding search_engine.iface.launch()